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ABSTRACT

This habilitation thesis presents a selection of the author’s contributions at the intersection
of computational number theory and cryptography. Its main focus is on the mathematical
foundations of isogeny-based and lattice-based cryptography.
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INTRODUCTION

Cryptography met number theory in 1976, when Diffie and Hellman [DH76] achieved what
had long been considered impossible: a protocol for two people to exchange secret infor-
mation on a public channel, even if they had never met before to establish some kind of
password, a pre-shared key. Diffie and Hellman designed the protocol such that a spy at-
tempting to find the secret would need to solve a presumably hard computational problem:
the discrete logarithm problem in the multiplicative group of a finite field.

This protocol is the first public key cryptosystem. In public key cryptography, each
party has a pair of keys: a public key and a private key. The security of a cryptosystem
is formalised by computational problems such as: given a public key, can one recover a
paired private key? Proving the security consists in proving that these problems are hard,
or at least as hard as some other well-studied problems. Cryptography requires hard and
versatile computational problems. Number theory provides such problems, together with
a powerful toolset for their analysis. The vast majority of deployed cryptosystems rely
on the presumed hardness of the discrete logarithm problem, and the integer factorisation
problem. Decades of cryptanalysis forged our confidence in these classical foundations.

In 1994, Shor [Sho97] discovered a quantum algorithm of polynomial complexity solv-
ing both of these problems, threatening all deployed public-key cryptography. Research on
quantum technology is accelerating, and the threat is seriously considered by the crypto-
graphic community, which has strived to develop schemes that resist quantum algorithms:
post-quantum cryptography. Emerging post-quantum candidates build their foundations
on a handful of computational problems rooted in arithmetic and geometry, and this man-
uscript explores two of them: isogeny-based cryptography, and lattice-based cryptography.

What to expect from this manuscript. This habilitation thesis is written as part of my
application for the Habilitation à Diriger des Recherches. As such, its primary purpose
is the exposition of a representative selection of the research I have conducted since the
obtention of my PhD diploma in 2018. It is not an exhaustive account of my work, but
an organized selection of interconnected topics: random walks and elliptic curves, elliptic
curves and ideals, ideals and random walks.

Selected results are not presented in exhaustive mathematical detail. Instead, the
manuscript focuses on context and motivation, explains the main theorems and ideas, and
only hints at the proofs and techniques deployed. When relevant, results beyond my own
contributions are discussed to leave the reader with a good overview of the current state
of the field — this document is thereby a biased survey on selected topics. For clarity,
references of which I am a coauthor are indicated with double brackets, as [[KW22]], while
other references have simple brackets, as [Piz90].
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The three chapters of this thesis concern three different objects arising in post-quantum
cryptography: supersingular isogeny graphs, oriented elliptic curves, and ideal lattices.

Chapter 1: Supersingular isogenies and endomorphisms. Elliptic curves have long
played a role in cryptography, as a platform for the discrete logarithm problem. They
have kept a central place in post-quantum cryptography thanks to the emergence of new
computational problems resisting quantum algorithms: isogeny problems. An isogeny is
a map connecting two elliptic curves. An isogeny problem is a computational problem
of this form: given two elliptic curves, find an isogeny between them. Most of isogeny-
based cryptography is based on the presumed hardness of the “supersingular” isogeny
problem and on a network of variants. In Chapter 1, we study these problems and their
applications, and the central role of random walks in so-called supersingular isogeny graphs.
It is organised around the following contributions.

• In the article [[Wes21]], we solidify the foundations of the field by proving that two
of its most emblematic problems are in fact equivalent (assuming the Generalized
Riemann Hypothesis): the supersingular isogeny path problem, and the endo-
morphism ring problem. The first is the path-finding problem in the so-called
supersingular isogeny graph. The second is the problem of finding all endomor-
phisms (i.e., isogenies to itself) of a supersingular elliptic curve.
• In the article [[PW24]], we prove that the endomorphism ring problem is equivalent

to the problem of finding one single (non-trivial) endomorphism. This so-called
one endomorphism problem supports the security of several cryptosystems. This
new connection immediately extends the web of equivalent problems supporting
isogeny-based cryptography, leads to better algorithms for their resolution, and
unlocks new security proofs. Our main tool is a new equidistribution theorem for
random walks in a versatile generalization of isogeny graphs.
• One important problem resisted unification with the others: the computational

problem supporting the security of the SIDH cryptosystem [JD11]. In a spec-
tacular turn of events, this variant proved easy and SIDH was broken in 2022
in the series of articles [CD23], [[MMP+23]] and [Rob23]. We recount this downfall,
carefully delineating our own contribution through [[Wes22b, MMP+23]].
• In [[DKL+20]], we introduce SQIsign, a digital signature scheme whose development

is intertwined with all previously mentioned results. The latest version, called
SQIsignHD [[DLRW24]], makes constructive use of the new tools which broke SIDH,
and its security lies firmly on the hardest problems of the field. The development
of SQIsign and its “HD” aspects is the topic of the thesis of my PhD student
Pierrick Dartois, coauthor of SQIsignHD [[DLRW24]], SQIsign2D [[BDD+24]], and
algorithms for evaluating isogenies in higher dimension [DMPR23].

The following is a complete list of my articles related to supersingular isogeny graphs
and their applications in cryptography.

[[BDD+24]]

Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Lu-
ciano Maino, Giacomo Pope, Damien Robert, and Benjamin Wesolowski.
SQIsign2D-West: The Fast, the Small, and the Safer. Cryptology ePrint
Archive, Paper 2024/760, 2024. https://eprint.iacr.org/2024/760.

[[PW24]]
Aurel Page and Benjamin Wesolowski. The supersingular endomorphism
ring and one endomorphism problems are equivalent. To appear in Advances
in Cryptology – EUROCRYPT 2024, 2024.

https://eprint.iacr.org/2024/760
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[[DLRW24]]
Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. SQISignHD: new dimensions in cryptography. To appear in
Advances in Cryptology – EUROCRYPT 2024, 2024.

[[MMP+23]]

Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT
2023, volume 14008 of Lecture Notes in Computer Science, pages 448–471.
Springer, 2023.

[[BCC+23]]

Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Pa-
tranabis, and Benjamin Wesolowski. Supersingular curves you can trust. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EURO-
CRYPT 2023, volume 14005 of Lecture Notes in Computer Science, pages
405–437. Springer, 2023.

[[DLLW23]]

Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski.
New algorithms for the Deuring correspondence - towards practical and
secure SQISign signatures. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology – EUROCRYPT 2023, volume 14008 of Lecture
Notes in Computer Science, pages 659–690. Springer, 2023.

[[Wes22b]]
Benjamin Wesolowski. Understanding and improving the Castryck–Decru
attack on SIDH. Archive ouverte HAL, Report hal-04557845, 2022. https:
//hal.science/hal-04557845.

[[Wes21]]
Benjamin Wesolowski. The supersingular isogeny path and endomorphism
ring problems are equivalent. In 62nd IEEE Annual Symposium on Foun-
dations of Computer Science – FOCS 2021, pages 1100–1111. IEEE, 2021.

[[DKL+20]]

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. SQISign: Compact post-quantum signatures from
quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020, volume 12491 of Lecture
Notes in Computer Science, pages 64–93. Springer, 2020.

[[DDF+21]]

Luca De Feo, Cyprien Delpech de Saint Guilhem, Tako Boris Fouotsa,
Péter Kutas, Antonin Leroux, Christophe Petit, Javier Silva, and Ben-
jamin Wesolowski. Séta: Supersingular encryption from torsion attacks. In
Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, volume 13093 of Lecture Notes in Computer Science,
pages 249–278. Springer, 2021.

[[GW17]]

Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on supersin-
gular isogeny cryptosystems. In Tanja Lange and Tsuyoshi Takagi, editors,
International Workshop on Post-Quantum Cryptography – PQCrypto 2017,
pages 93–106. Springer, 2017.

Chapter 2: Oriented elliptic curves. The discrete logarithm problem is a special
case of the group action inversion problem. While Shor’s algorithm solves the former,
the general case still resists quantum algorithms. The Diffie–Hellman protocol (and much
of the vast array of “discrete logarithm”-based cryptosystems which followed) can be

https://hal.science/hal-04557845
https://hal.science/hal-04557845
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brought to the post-quantum world by replacing discrete logarithms with an appropriate
“hard to invert” group action. The classical theory of complex multiplication induces an
action of an ideal class group on a collection of elliptic curves. Exploiting this action
in cryptosystems presented significant challenges, until supersingular elliptic curves were
considered [CLM+18]. Complex multiplication is typically associated to ordinary (i.e., non-
supersingular) elliptic curves. The notion of oriented elliptic curve generalizes the methods
of complex multiplication to the supersingular case. In Chapter 2, we study oriented
elliptic curves and their applications in cryptography. It is organised around the following
contributions.

• While this “group action” branch of isogeny-based cryptography looks substan-
tially different from the “isogeny path and endomorphism ring” problems dis-
cussed in Chapter 1, we prove in the article [[Wes22a]] that the group action
inversion problem is still equivalent to the problem of computing endomorphism
rings (but now, for oriented elliptic curves). This result further reinforces the
foundational status of the endomorphism ring problem: its presumed hardness
also governs the security of the “group action” branch of the field.
• In the article [[HW23]], with my PhD student Arthur Herlédan Le Merdy, we study

the concrete hardness of the “oriented” endomorphism ring problem, describing
and analysing the fastest classical and quantum algorithms. In the process, we
prove that the complexities claimed by the previous best heuristic algorithms
for the group action inversion problem can actually be achieved assuming the
Generalised Riemann Hypothesis. In addition, we obtain the first polynomial
time algorithm for the problem of turning an arbitrary orientation into a primitive
orientation (a kind of “best possible” orientation).
• In the article [[DFK+23]], we introduce SCALLOP. The group acting on supersin-

gular curves is an ideal class group. Class groups are generally hard to compute,
and that has been a source of difficulty in the design of cryptosystems. SCAL-
LOP offers a framework to define a hard-to-invert action by an easy-to-compute
class group. This brings this group action one step closer to the capabilities
of the discrete logarithm paradigm, while preserving its claim for post-quantum
security.

The following is a complete list of my articles related to the notion of oriented elliptic
curves and their applications in cryptography.

[[HW23]]
Arthur Herlédan Le Merdy and Benjamin Wesolowski. The supersingular
endomorphism ring problem given one endomorphism. Cryptology ePrint
Archive, Paper 2023/1448, 2023. https://eprint.iacr.org/2023/1448.

[[ACD+23]]

Sarah Arpin, James Clements, Pierrick Dartois, Jonathan Komada Eriksen,
Péter Kutas, and Benjamin Wesolowski. Finding orientations of supersingu-
lar elliptic curves and quaternion orders. Cryptology ePrint Archive, Paper
2023/1268, 2023. https://eprint.iacr.org/2023/1268.

[[DFK+23]]

Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling
the CSI-FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
Public-Key Cryptography – PKC 2023, volume 13940 of Lecture Notes in
Computer Science, pages 345–375. Springer, 2023.

https://eprint.iacr.org/2023/1448
https://eprint.iacr.org/2023/1268
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[[CHVW22]]

Wouter Castryck, Marc Houben, Frederik Vercauteren, and Benjamin
Wesolowski. On the decisional Diffie-Hellman problem for class group ac-
tions on oriented elliptic curves. Research in Number Theory, 8(4):99, 2022.
Proceedings of the Fifteenth Algorithmic Number Theory Symposium –
ANTS-XV.

[[Wes22a]]

Benjamin Wesolowski. Orientations and the supersingular endomorphism
ring problem. In Orr Dunkelman and Stefan Dziembowski, editors, Ad-
vances in Cryptology – EUROCRYPT 2022, volume 13277 of Lecture Notes
in Computer Science, pages 345–371. Springer, 2022.

Chapter 3: Ideal lattices. A lattice is a discrete subgroup in a Euclidean vector space.
The problem of finding a shortest non-zero vector in a lattice (the shortest vector problem,
or SVP) is a central hard problem in complexity theory, and the heart of lattice-based
cryptography. Lattices appear naturally in algebraic number theory: the ring of integers
of a number field is a lattice, and so is any (fractional) ideal. These ideal lattices have
a special place in computational number theory, and provide a powerful playground for
cryptography, via the corresponding Id-SVP problem. In Chapter 3, we study ideal lat-
tices through the development and application of a new tool: random walks in the space
of ideal lattices. It is organized around the following contributions.

• In the article [[BDPW20]], we describe random walks in the Arakelov class group, and
prove their rapid-equidistribution properties (assuming the Generalized Riemann
Hypothesis). The Arakelov class group is essentially the space of ideal lattices up
to isometry. As a first application of this new randomization tool, we prove that
Id-SVP is hard on average for uniformly random ideal lattices (with respect to
the Haar measure): if there exist hard instances of Id-SVP, then it is hard for
random ideal lattices. Average hardness is of primary interest for cryptographic
applications. These random walks are the main topic of the PhD thesis of Koen de
Boer, coauthor of [[BDPW20]] and [[BPW24]]. His thesis, of which I was co-promotor,
was successfully defended in 2022.
• Average hardness is defined with respect to a distribution on instances (here,

ideal lattices), and while uniformity for the Haar measure is mathematically the
most natural candidate, it is not the best suited for applications. In the arti-
cle [[FPSW23]], we prove that Id-SVP is hard on average for uniformly random
prime ideals of bounded norm. This distribution is well-suited, for instance, for
application to the NTRU cryptosystem.
• In the article [[BPW24]], we solve a recurring problem in computational number

theory: sampling ideals in a given class, with a prescribed property (smooth,
near-prime...). While it is easy to design a heuristic algorithm for this task
(i.e., relying on unproven ad hoc assumptions), we provide the first rigorous
method, under the Generalized Riemann Hypothesis. To illustrate the power of
this technique, we describe the first rigorous subexponential time algorithm for
some of the most emblematic problems of the domain: computing class groups
and unit groups of arbitrary number fields. Previous rigorous algorithms were
restricted to quadratic fields.

The following is a complete list of my articles related to the notion of ideal lattices
and their applications in cryptography and computational number theory.



14 INTRODUCTION

[[BPW24]]
Koen de Boer, Alice Pellet-Mary, and Benjamin Wesolowski. Rigorous
methods for computational number theory. Preprint available on demand,
2024.

[[FPSW23]]

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé, and Benjamin
Wesolowski. Ideal-SVP is hard for small-norm uniform prime ideals. In
Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography –
21st International Conference, TCC 2023, volume 14372 of Lecture Notes
in Computer Science, pages 63–92. Springer, 2023.

[[CDW21]]
Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Mildly short vectors
in cyclotomic ideal lattices in quantum polynomial time. Journal of the
ACM, 68(2):8:1–8:26, 2021.

[[BDPW20]]

Koen de Boer, Léo Ducas, Alice Pellet-Mary, and Benjamin Wesolowski.
Random self-reducibility of Ideal-SVP via Arakelov random walks. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy – CRYPTO 2020, volume 12171 of Lecture Notes in Computer Science,
pages 243–273. Springer, 2020.

[[DPW19]]

Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. On the shortness
of vectors to be found by the Ideal-SVP quantum algorithm. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, volume 11692 of Lecture Notes in Computer Science, pages
322–351. Springer, 2019.

[[CDW17]]

Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger
class relations and application to Ideal-SVP. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT
2017, volume 10210 of Lecture Notes in Computer Science, pages 324–348.
Springer, 2017.

Other articles. The following is a complete list of my articles on themes not covered in
this manuscript.

Discrete logarithms in finite fields. The following articles concern the problem of comput-
ing discrete logarithms in finite fields. We prove in [[KW22]] that they can be computed in
quasi-polynomial time in finite fields of small characteristic. This result improves upon the
subexponential complexity proved by Pomerance in 1987 [Pom87]. The quasi-polynomial
complexity had been conjectured to be reachable since [BGJT14], where a first heuristic
algorithm was proposed. We illustrate the power of the method with the record compu-
tation of a 30750-bit discrete logarithm in [[GKL+21]].

[[KW22]]
Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in
quasi-polynomial time in finite fields of fixed characteristic. Journal of the
American Mathematical Society, 35(2):581–624, 2022.

[[GKL+21]]
Robert Granger, Thorsten Kleinjung, Arjen K. Lenstra, Benjamin
Wesolowski, and Jens Zumbrägel. Computation of a 30750-bit binary field
discrete logarithm. Mathematics of Computation, 90(332):2997–3022, 2021.
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[[KW19]]

Thorsten Kleinjung and Benjamin Wesolowski. A new perspective on the
powers of two descent for discrete logarithms in finite fields. In Proceedings
of the Thirteenth Algorithmic Number Theory Symposium – ANTS-XIII,
volume 2, pages 343–352. The Open Book Series, Mathematical Sciences
Publishers, 2019.

Isogenies between Drinfeld modules. The following article proves that one can compute
isogenies in polynomial time between Drinfeld modules over finite fields. This breaks
Drinfeld analogs of isogeny-based cryptosystems [LS22]. Former attempts had exponen-
tial complexity [JN19, CGS20].

[[Wes24]] Benjamin Wesolowski. Computing isogenies between finite Drinfeld mod-
ules. To appear in IACR Communications in Cryptology, 2024.

Isogeny graphs of ordinary abelian varieties. The following articles concern the graphs
formed by isogenies between ordinary abelian varieties in higher dimension.

[[JW19]]
Dimitar Jetchev and Benjamin Wesolowski. Horizontal isogeny graphs of
ordinary abelian varieties and the discrete logarithm problem. Acta Arith-
metica, 187:381–404, 2019.

[[Wes19b]]

Benjamin Wesolowski. Generating subgroups of ray class groups with small
prime ideals. In Proceedings of the Thirteenth Algorithmic Number Theory
Symposium – ANTS-XIII, volume 2, pages 461–478. The Open Book Series,
Mathematical Sciences Publishers, 2019.

[[BJW17]]
Ernest Hunter Brooks, Dimitar Jetchev, and Benjamin Wesolowski. Isogeny
graphs of ordinary abelian varieties. Research in Number Theory, 3(1):28,
2017.

Verifiable delay functions and randomness. The following articles concern verifiable delay
functions and the generation of random numbers. In [[LW17]], we describe the first scalable
protocol for the public and trustworthy generation of random numbers, using a new slow-
timed hash function. This notion of slow hash function was formalised and generalised as
a verifiable delay function (VDF) in [BBBF18]. In [[Wes19a]], we construct the first practical
VDF.

[[BFH+24]]

Alex Biryukov, Ben Fisch, Gottfried Herold, Dmitry Khovratovich, Gaëtan
Leurent, María Naya-Plasencia, and Benjamin Wesolowski. Cryptanalysis
of algebraic verifiable delay functions. To appear in Advances in Cryptology
– CRYPTO 2024, 2024.

[[BKSW23]]
Karim Belabas, Thorsten Kleinjung, Antonio Sanso, and Benjamin
Wesolowski. A note on the low order assumption in class group of an imagi-
nary quadratic number fields. Mathematical Cryptology, 3:44–51, Jul. 2023.

[[WW20]]
Ryan Williams and Benjamin Wesolowski. Lower bounds for the depth of
modular squaring. IACR Cryptology ePrint Archive, Report 2020/1461,
2020. https://eprint.iacr.org/2020/1461.

[[Wes20]] Benjamin Wesolowski. Efficient verifiable delay functions. Journal of Cryp-
tology, 33(4):2113–2147, 2020.

https://eprint.iacr.org/2020/1461
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[[Wes19a]]

Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2019, volume 11478 of Lecture Notes in Computer Science, pages 379–407.
Springer, 2019.

[[PW18]] Cécile Pierrot and Benjamin Wesolowski. Malleability of the blockchain’s
entropy. Cryptography and Communications, 10(1):211–233, 2018.

[[LW17]]
Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public random-
ness with sloth, unicorn, and trx. International Journal of Applied Cryp-
tography, 3(4):330–343, 2017.

Broadcast encryption. In the following article, we design a new attribute-based broadcast
encryption scheme with small keys.

[[WJ15]]

Benjamin Wesolowski and Pascal Junod. Ciphertext-policy attribute-based
broadcast encryption with small keys. In Soonhak Kwon and Aaram Yun,
editors, Information Security and Cryptology – ICISC 2015, volume 9558
of Lecture Notes in Computer Science, pages 53–68. Springer, 2015.

Notation and terminology

Rings and fields. We write Z,Q,R,C and Fq for the ring of integers, the fields of rational,
real and complex numbers, and a finite field with q elements. For any field K, we write
K for an algebraic closure. For any ring R, we write R× for the multiplicative group of
invertible elements.

Complexities. We write f = O(g) for the classic big O notation. We use the soft-O
notation Õ(g) = log(g)O(1) ·O(g), and the polynomial growth notation poly(f1, . . . , fn) =
(f1 + · · ·+ fn)

O(1). We use the classical L-notation for subexponential growth

Lx(α) = exp
(
O(logx)α(log logx)1−α

)
.

The logarithm function log is in base 2.

Sets and probabilities. For any set S, we write #S for its cardinality. If D is a prob-
ability distribution, we write x ← D to signify that x is a random variable sampled with
distribution D. If S is a finite set, we also write x← S for x uniformly distributed in S.

The Generalized Riemann Hypothesis. Several of the results presented in this manu-
script are conditional under the Riemann Hypothesis for Hecke L-functions, which we will
refer to as the Generalized Riemann Hypothesis (abbreviated GRH). When needed, this
assumption is explicitly mentioned in the statement. Note that the proof of such results
do not use GRH in its original form, but rely on some of its established consequences,
such as the effective Chebotarev density theorem of Lagarias and Odlyzko [LMO79].

The “heuristic” terminology. The meaning of “heuristic” in computational number
theory differs from other areas of computer science. Let us clarify this terminology. In
computational number theory (and in the present manuscript) an algorithm is said to be
heuristic if it is believed to work, but its analysis relies on unproven ad hoc assumptions.
For instance, an algorithm may craft an integer, and one expects this integer to “behave”
like a uniformly random integer of a certain size; we can then deduce the probability
of certain events, like it being prime. It is often hard to prove such a behavior, but
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its assumption unlocks the analysis of the algorithm. The underlying assumption, the
heuristic assumption, may be supported by experiments and intuition.

We make an informal distinction between heuristic assumptions and standard number-
theoretic conjectures (like the Generalized Riemann Hypothesis). Heuristic assumptions
are generally ad hoc, highly dependent on the situation, and are often in the spirit of:
“at this point in the algorithm, all goes well”. Sometimes, a heuristic assumption is not
expected to be literally true: in the above example, the integer may not be uniformly
distributed, and one only expects it to “behave uniformly”.

A few contributions presented in this manuscript consist in turning a heuristic result
into a rigorous result. This means that a heuristic algorithm already existed, and we
provide a fully rigorous algorithm (either unconditional or subject to GRH).





1
Supersingular isogenies and endomorphisms

In this chapter, we present contributions related to the computational problem of finding
isogenies between supersingular elliptic curves and its applications in cryptography. We
explore connections between this problem, random walks in isogeny graphs, the problem
of computing endomorphisms of elliptic curves, and the power of higher dimensional isoge-
nies. We conclude this chapter by presenting the SQIsign digital signature scheme, which
has benefited from all these advances from its original design to its latest improvements.

This chapter is built around the presentation of the articles (in order of appearance):

[[PW24]]
Aurel Page and Benjamin Wesolowski. The supersingular endomorphism
ring and one endomorphism problems are equivalent. To appear in Advances
in Cryptology – EUROCRYPT 2024, 2024.

[[Wes21]]
Benjamin Wesolowski. The supersingular isogeny path and endomorphism
ring problems are equivalent. In 62nd IEEE Annual Symposium on Foun-
dations of Computer Science – FOCS 2021, pages 1100–1111. IEEE, 2021.

[[MMP+23]]

Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT
2023, volume 14008 of Lecture Notes in Computer Science, pages 448–471.
Springer, 2023.

[[DKL+20]]

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. SQISign: Compact post-quantum signatures from
quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020, volume 12491 of Lecture
Notes in Computer Science, pages 64–93. Springer, 2020.

[[DLRW24]]
Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. SQISignHD: new dimensions in cryptography. To appear in
Advances in Cryptology – EUROCRYPT 2024, 2024.



20 1. SUPERSINGULAR ISOGENIES AND ENDOMORPHISMS

1.1. Introduction

Given a field k of characteristic p > 3, and two parameters A,B ∈ k with 4A3+27B2 6= 0,
the equation

y2 = x3 +Ax+B

defines a so-called elliptic curve over k. Elliptic curves can be more abstractly defined
as abelian varieties of dimension 1, and the equation y2 = x3 + Ax + B is merely a
short Weierstrass model of the elliptic curve. Given an elliptic curve E, its set E(k) of
k-rational points consists of the pairs (x, y) ∈ k2 satisfying the curve equation, together
with an extra point 0E “at infinity” (a projective solution of the equation). They naturally
form an abelian group, written additively, where 0E is the neutral element.

Elliptic curves have long had a central place in cryptography, since Miller [Mil86]
and Koblitz [Kob87] proposed in 1986 to run the Diffie–Hellman key exchange proto-
col [DH76] over elliptic curves. In a world where large-scale quantum computers would
become available, Shor’s algorithm [Sho97] would render the Diffie–Hellman protocol ob-
solete, with or without elliptic curves. Yet, in the quest for post-quantum cryptography,
elliptic curves have kept a central place thanks to the emergence of new computational
problems that seem to resist quantum algorithms: isogeny problems. The first isogeny-
based cryptosystems were proposed by Couveignes in 1997 [Cou06]. This work was only
made public in 2006, when the idea reemerged in [RS06]. Supersingular elliptic curves
appeared to be particularly well suited for the design of post-quantum cryptosystems,
starting with the CGL hash function [CLG09], followed by the SIDH key exchange [JD11].
A wealth of other public-key protocols [CLM+18, DKPS19, Cos20, BMP23], [[DFK+23]], sig-
nature schemes [YAJ+17, DG19, BKV19, GPS20], [[DKL+20, DLRW24]] and other cryptosys-
tems [DMPS19, BKW20] have since been proposed, built on the presumed hardness of isogeny
problems.

Let E1 and E2 be two elliptic curves defined over k. An isogeny ϕ : E1 → E2 is
a non-constant rational map (i.e., coordinates of the output are given by fractions of
polynomials in the input coordinates) that sends 0E1 to 0E2 . This rather simple definition
automatically implies strong properties: an isogeny is a group homomorphism from E1(k)
to E2(k), and its kernel over the algebraic closure, written ker(ϕ), is finite. This notion
naturally leads to a computational problem.

Problem 1.1 (The isogeny problem, informally). Given two elliptic curves E1 and E2

over a finite field, find, if it exists, an isogeny ϕ : E1 → E2.

Versions of this problem are believed to be hard, and isogeny-based cryptography
leverages this hardness. This problem is most often considered for so-called supersingular
elliptic curves. Then, a solution is guaranteed to exist (two supersingular elliptic curves
over the same field are always connected by an isogeny), and the isogeny problem appears
to be at its hardest for such curves. Almost all isogeny-based cryptography considers
supersingular elliptic curves.

To formally define an isogeny problem, one must specify what it means to “find an
isogeny”. Encoding an isogeny is not a straightforward task. It has rapidly appeared
convenient to consider isogenies formed as compositions of simple building-blocks. An
`-isogeny, for ` a small prime, is such a family of simple, easy-to-work-with isogenies. An
`-isogeny path is a composition of `-isogenies. Here is another motivation to work with
supersingular elliptic curves: any pair is connected by an `-isogeny path (whatever `,
including the typical choice ` = 2). This leads to the first fully-specified version of the
isogeny problem: the supersingular `-isogeny path problem.
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Problem 1.2 (`-IsogenyPath). Given a prime p, and two supersingular elliptic curves
E1 and E2 over Fp2 , find an `-isogeny path from E1 to E2.

This problem was first considered in [CLG09], and has since assumed a foundational
role in isogeny-based cryptography, raising questions such as:

• How hard is the `-IsogenyPath problem? How efficient are the best algorithms?
Is it the hardest of its kind?
• What kind of cryptosystems can be built from it? Can it, or variants, be used to

prove the security, or to attack schemes?
A large part of the work towards answering these questions consists in defining and ana-
lyzing related problems: some that may be easier to study, or easier to connect to cryp-
tosystems. Here are a few such problems of central interest:

• EndRing: given a supersingular elliptic curve E, compute its endomorphism
ring End(E). An endomorphism is an isogeny from the curve to itself (or the
zero-morphism). This problem has been studied as early as [Koh96], originally
motivated by the importance of these structures in arithmetic geometry.
• OneEnd: given a supersingular elliptic curve, find one non-scalar endomorphism.

This is a straightforward simplification of EndRing: instead of finding all endo-
morphisms, can one find even a single one? This problem naturally emerges in
cryptosystems: it supports the collision-resistance of [CLG09] or the soundness of
SQIsign [[DKL+20]].
• Isogeny: given two supersingular elliptic curves, find an isogeny between them,

in any form that allows to efficiently evaluate it on points. This is perhaps the
most natural form of the isogeny problem, as, contrary to `-IsogenyPath, the
solution is not restricted to special kinds of isogenies.
• Interpolation: given two supersingular elliptic curves, and the images of a few

points through an unknown isogeny, find the isogeny. This version of the isogeny
problem supports the SIDH key exchange protocol [JD11].

In this chapter, we study these problems. We connect them to one another, study the
best algorithms for their resolution, and how to build cryptosystems from their presumed
hardness.

1.1.1. Contributions and organisation of the chapter. The chapter is organized as
follows.

Random walks in isogeny graphs. In Section 1.2, we define `-isogeny graphs, whose vertices
are elliptic curves, and edges represent `-isogenies between them. The `-IsogenyPath
problem is the pathfinding problem in these graphs. Pizer proved in [Piz90] that they
are Ramanujan graphs: an optimal form of expander graphs, where random walks rapidly
converge to the uniform distribution. This is a key property for cryptographic applications
and for the analysis of `-IsogenyPath and its friends. We illustrate this fact with a few
simple examples.

We then present isogeny graphs of “higher level” as defined and analysed in our
work [[PW24]]. It is often useful to consider some additional structure attached to the
elliptic curves. The vertices of the graph, instead of being curves, could be pairs (E,P )
where P ∈ E is a point, or (E,α) where α ∈ End(E)/N End(E) (for some integer N).
Edges would be isogenies that preserve this additional structure. In the article [[PW24]], we
introduce a general framework for such graphs, and prove that, like in the classical case,
random walks equidistribute optimally.
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The `-Isogeny Path and Endomorphism Ring problems. It was soon identified that the
problems `-IsogenyPath and EndRing are closely related, and heuristic computational
reductions between them were described in [EHL+18]. In [[Wes21]], we prove that these two
problems are indeed equivalent, assuming the Generalised Riemann Hypothesis (GRH).
As in [EHL+18], this is done by passing through a third equivalent problem: MaxOrder.
We present these results in Section 1.3.

Finding one endomorphism is as hard as finding them all. In Section 1.4, we present the
main result of [[PW24]]: the EndRing and OneEnd problems are equivalent. In other
words, finding one endomorphism of a supersingular elliptic curve is as hard as finding
them all. We sketch the reduction, which makes critical use of the equidistribution for
random walks in higher isogeny graphs discussed in Section 1.2.

We then present a number of consequences. First, assuming the hardness of EndRing,
the Charles–Goren–Lauter hash function [CLG09] is collision-resistant. Second, EndRing
is equivalent to Isogeny. Third, there exists an unconditional probabilistic algorithm to
solve EndRing in time Õ(p1/2), a result which previously required to assume GRH.

The fall of SIDH. Supersingular Isogeny Diffie-Hellman (or SIDH [JD11]) is a key exchange
protocol proposed in 2011 by Jao and De Feo. It has been among the most popular isogeny-
based schemes, and the first key exchange using supersingular elliptic curves. However,
its security relies not on the `-IsogenyPath problem, but on its cousin Interpolation:
given two elliptic curves and images of a few points through some unknown isogeny, find
the isogeny. Of course, there is a spectrum of hardness for this problem, depending on
the order of the group generated by the revealed points. Revealing too many points was
known to be dangerous, but SIDH has long been believed to be in a secure regime.

In Section 1.5, we recount the earthquake that struck isogeny-based cryptography in
2022, when the series of work [CD23], [[MMP+23]] and [Rob23] solved the Interpolation
problem in an unforeseen level of generality. In particular, SIDH is now completely broken.
While carefully delineating our own contribution through [[Wes22b, MMP+23]], we present
the result in a greater level of generality to include the final nail hammered by Robert
[Rob23].

SQIsign: signing with isogenies. In Section 1.6, we present the digital signature scheme
SQIsign. We introduced this scheme in [[DKL+20]], improved it in [[DLLW23]], and redesigned
it in SQIsignHD [[DLRW24]]. SQIsign is currently submitted to the NIST call for standard-
isation of post-quantum digital signature schemes. It boasts the smallest public keys and
signatures combined of today’s post-quantum portfolio.

We describe the general structure of SQIsign, with a focus on the variant SQIsignHD,
which makes constructive use of the recent advances on the Interpolation problem
discussed in Section 1.5.

1.1.2. Preliminaries on isogenies. In this section, we briefly review some of the most
important properties of isogenies required in the rest of the text. We refer the reader
to [Sil86] for a detailed account of the theory of elliptic curves and isogenies. In this text,
all elliptic curves are defined over a finite field. We denote by Fpn a finite field with pn

elements and characteristic p, and by Fp an algebraic closure of Fpn .

Isomorphisms. An isogeny ϕ : E → E′ is an isomorphism if there exists an isogeny
ϕ̂ : E′ → E such that ϕ̂ ◦ ϕ (and thereby ϕ ◦ ϕ̂) is the identity. Isomorphisms from E to
itself form the group of automorphisms Aut(E). For E defined over Fpn , the j-invariant
j(E) ∈ Fpn is a complete invariant of the isomorphism class of E over the algebraic closure
Fp: there exists an isomorphism E → E′ over Fp if and only if j(E) = j(E′).
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Degree and separability. Intuitively, the degree of an isogeny ϕmeasures how “complicated”
it is. A simple measure of this complexity would be # ker(ϕ), and this is close to the correct
definition. The degree is actually an integer of the form pk ·# ker(ϕ), where p > 0 is the
characteristic of the field. When k = 0, i.e., when deg(ϕ) = # ker(ϕ), the isogeny is called
separable. The case k > 0 can only arise from a special isogeny: the pk-Frobenius isogeny
defined as

φEpk : E −→ E(pk) : (x, y) 7−→ (xp
k
, yp

k
).

For any isogeny ϕ, there is a maximal integer n such that ϕ factors in the form ψ ◦ φE
pk

.
We then define deg(ϕ) = pk ·# ker(ϕ).

The kernel encodes most of the information about a separable isogeny. Indeed, for any
separable isogenies ϕ1 : E → E1 and ϕ2 : E → E2, if ker(ϕ1) = ker(ϕ2), then there exists
an isomorphism ψ : E1 → E2 such that ϕ2 = ψ ◦ ϕ1. Moreover, for any finite subgroup
G ⊂ E, there exists a separable isogeny ϕG with kernel G. In virtue of its unicity (up to
isomorphism), we write E/G for the codomain of ϕG.

Prime decomposition. If deg(ϕ) = ` is a prime number, we say that ϕ is an `-isogeny.
Any isogeny can be written as a composition of `-isogenies: if deg(ϕ) =

∏
i `i with each `i

prime, there exist isogenies ϕi of appropriate domains and codomains such that each ϕi

is an `i-isogeny and ϕ = ϕn ◦ · · · ◦ ϕ1.

Endomorphisms. An endomorphism of E is an isogeny from E to itself (or the zero mor-
phism). The collection of all endomorphisms of E (over Fp) forms the endomorphism ring
End(E). As its name suggests, it is a ring for pointwise addition, and composition of
maps. For any integer m ∈ Z, the multiplication-by-m map [m]E : E → E : P 7→ m · P
is an endomorphism. Abusing notation, we will often consider Z as a subring of End(E),
since this construction m 7→ [m]E is injective. Elements of this subring Z ⊂ End(E) are
called scalar endomorphisms.

Dual. For any isogeny ϕ : E1 → E2, there exists a unique isogeny ϕ̂ : E2 → E1, the dual
of ϕ, such that ϕ̂ ◦ ϕ = [deg(ϕ)].

Torsion and supersingularity. The m-torsion of E is the subgroup E[m] = ker([m]E).
Multiplication by m is separable if and only if gcd(m, p) = 1, in which case E[m] ∼=
(Z/mZ)2. The situation at the prime p leads to a dichotomy:

• either E[pn] ∼= Z/pnZ for all n ≥ 0, and we say E is ordinary, or
• E[pn] = {0E} for all n ≥ 0, and we say E is supersingular.

1.1.3. Computing with isogenies. Isogenies are rather abstract objects, yet we wish
to work with them computationally: store them, evaluate them. One could represent
an isogeny by explicit formulas, as a rational map, but that rapidly becomes impractical
with increasing degrees. Alternatively, an isogeny can be described by generators of its
kernel. Let G ⊂ E be a subgroup generated by (P1, . . . , Pn). The data of (P1, . . . , Pn) then
encodes the isogeny ϕG : E → E/G. We call this the kernel representation of an isogeny,
and Vélu proposed formulas which given the generators of G, returns the codomain E/G
and evaluates ϕG at any point in O(#G) arithmetic operations [Vél71]. This complexity
has recently been improved to O(

√
#G) [BDFLS20]. This method is well-suited for isogenies

of reasonably small degree. Yet, in cryptographic applications, one will routinely encounter
isogenies of degree of the order of 2256. Another solution is needed.

One can exploit the multiplicativity of the degree: composing small degree isogenies
rapidly produces large degree ones. Consider a sequence ϕi : Ei−1 → Ei. The composi-
tion ϕn ◦ · · · ◦ ϕ1 can be represented by a tuple (ϕ1, . . . , ϕn) where each ϕi is in kernel
representation. The length grows linearly in n, but the degree grows exponentially. One
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can thus efficiently manipulate isogenies of degree 2n as sequences of n isogenies of degree
2. We call such a sequence an isogeny path.

The isogeny path representation is an example of an efficient representation: a rep-
resentation of an isogeny ϕ that allows to store and evaluate it in polynomial time in
log(deg(ϕ)).

Definition 1.3 (Efficient representation). Let A be a polynomial time algorithm. It is
an efficient isogeny evaluator if for any D ∈ {0, 1}∗ such that A (validity, D) outputs >,
there exists an isogeny ϕ : E → E′ (defined over some finite field Fq) such that:

(1) on input (curves, D), A returns (E,E′),
(2) on input (degree, D), A returns deg(ϕ),
(3) on input (eval, D, P ) with P ∈ E(Fqk), A returns ϕ(P ).

If furthermore D is of polynomial size in log(degϕ) and log q, then D is an efficient
representation of ϕ (with respect to A ).

When we say that an isogeny is in efficient representation, the algorithm A is often
left implicit. There are only a handful of known algorithms to evaluate isogenies, so one
can think of A as an algorithm that implements each of these, and D would start with
an indicator of which algorithm to use. In the following sections, we will see more recent
and powerful examples of efficient representations — including a universal method: the
interpolation representation discussed in Section 1.5.2.

1.2. Random walks in isogeny graphs

1.2.1. The standard supersingular isogeny graph. An isogeny graph is a multi-
graph where vertices are elliptic curves up to isomorphism, and edges represent certain
isogenies between them. Fix two distinct prime numbers p and `. The (full) `-isogeny
graph over Fp is defined as follows:

• Its vertices are the (isomorphism classes of) elliptic curves over Fp.
• Its edges are all the isogenies of degree ` (also called `-isogenies). More precisely,

there is an edge of multiplicity m from E1 to E2 if there are m distinct subgroups
G ⊂ E of order ` such that E2

∼= E1/G.
This graph has infinitely many vertices, and exactly one of its connected components is
finite: the supersingular component SS`(p), whose vertices are the supersingular elliptic
curves. We call this component the supersingular `-isogeny graph over Fp. Almost all
isogeny-based cryptography takes place in this component. Here are a few first observa-
tions about this graph.

• The supersingular `-isogeny graph counts p/12 + O(1) vertices (isomorphism
classes of supersingular elliptic curves). They each admit a model defined over Fp2 .
• The graph is (`+ 1)-out-regular. One can efficiently enumerate the neighbors of

any given vertex (in time polynomial in ` and log p), and thereby navigate in the
graph.
• The `-IsogenyPath problem is simply the pathfinding problem in the supersin-

gular `-isogeny graph.

1.2.2. Rapid mixing of random walks. Given a vertex E0 of the `-isogeny graph, a
random walk (of length n) from E0 is a sequence (Ei)

n
i=0 where each Ei+1 is a random

neighbor of Ei. Unless otherwise specified, we will consider the uniform distribution on
neighbors.

These random walks are useful in isogeny-based cryptography for one particular rea-
son: they have rapid mixing properties. In fact, the supersingular `-isogeny graph is a
Ramanujan graph, a family of graphs in which random walks equidistribute optimally: the
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target of a random walk of length at least O(log p) is indistinguishable from a uniformly
random vertex.

For a more formal statement, let us recall the notion of total variation distance. Given a
random variableX with values in a discrete set X , we say it has distribution f : X → [0, 1]
if f(x) = Pr[X = x] for every x ∈ X . We also write f(A) =

∑
x∈A f(x) for any A ⊆ X .

For two distributions f1 and f2 over the same set X , their total variation distance is
1

2
‖f1 − f2‖1 =

1

2

∑
x∈X

|f1(x)− f2(x)| = sup
A⊆X

|f1(A)− f2(A)|.

The rapid-mixing of supersingular `-isogeny graphs is the following well-known propo-
sition. In Section 1.2.4, we present the much more general version of [[PW24, Theorem 3.10]].

Proposition 1.4. Let E be a supersingular elliptic curve over Fp2, and ` 6= p a prime
number. Let ε > 0. There is a bound n = O(log`(p)− log`(ε)) such that the endpoint of a
uniform random walk of length at least n from E in the `-isogeny graph is at total variation
distance at most ε from the stationary distribution f , which is f(E) = 24

(p−1)# Aut(E) .

Proof. This is a standard consequence of Pizer’s proof that the supersingular `-isogeny
graph is Ramanujan [Piz90]. Details can be found, for instance, in [[BCC+23, Theorem 11]]
for the length of the walk, and in [[BCC+23, Theorem 7, Item 2]] for the description of the
stationary distribution. �

The stationary distribution is at statistical distance O(1/p) of the uniform distribu-
tion (because # Aut(E) = 2 for almost all curves, and # Aut(E) = O(1) for the rare
exceptions). For all cryptographic purposes, the stationary and uniform distributions are
indistinguishable, and we often conflate them in the rest of the text.

1.2.3. Cryptographers care about random walks. Random walks play a key role in
isogeny-based cryptography. A critical point is that cryptography requires computational
problems that are hard on average: problems which cannot be solved efficiently for ran-
dom inputs, with non-negligible probability. Thus designing and analysing cryptosystems
requires good randomisation tools. We now illustrate this with a few classical applications
of random `-isogeny walks.

Average-case problems. Here is an average-case version of `-IsogenyPath.

Problem 1.5 (Average-case `-IsogenyPath). Given a prime p, and two uniformly ran-
dom supersingular elliptic curves E1 and E2 over Fp2 , find an `-isogeny path from E1 to
E2.

One can prove that the CGL hash function [CLG09] is preimage-resistant if average-
case `-IsogenyPath is hard (i.e., if no efficient algorithm solves it with good probability).
The CGL hash function was the first isogeny-based construction using random walks in
the supersingular `-isogeny graph. The idea is the following. Fixing a reference curve E0,
a binary string x ∈ {0, 1}n encodes a (non-backtracking) walk ϕx : E0 → Ex of length
n in the 2-isogeny graph (the graph has degree 3, so there are two possibilities for each
“next step”, arbitrarily labelled 0 and 1; for the first step, we arbitrarily discard one of
the three possibilities). The CGL hash function is the function

CGLE0 : {0, 1}∗ −→ Fp2 : x 7−→ j(Ex)

which sends any binary string to the j-invariant of the target curve Ex of the encoded
walk ϕx. Finding a preimage for that function CGLE0 thus amounts to finding a path
E0 → Ex in the `-isogeny graph. The cryptographic notion of preimage-resistance is an
“average case” property: CGLE0 is preimage-resistant if it is hard to find preimages with
good probability for uniformly random inputs of a certain length. This is where random
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walks come in: a random input x ∈ {0, 1}n ⊂ {0, 1}∗ for f encodes a random walk of
length n. When n is large enough, the output of this random walk is close to uniform.
From there, it is easy to deduce that if average-case `-IsogenyPath is hard, then the
CGL hash function is preimage-resistant (with small technicalities to deal with, like the
fact that {0, 1}∗ only encodes non-backtracking walks).

Worst-case to average-case reductions. The CGL construction is already an interesting first
application of the rapid-mixing property, but the result is not yet satisfactory. The core as-
sumption of isogeny-based cryptography is the worst-case hardness of the `-IsogenyPath
problem: no algorithm can solve it efficiently on every input. Clearly, if it is hard on aver-
age, then it is hard in the worst case. But we wish to prove the converse: if it is hard in the
worst case (our core assumption), then it is hard on average. Random walks unlock such
a proof. Suppose there is an efficient algorithm A for average-case `-IsogenyPath, and
let E1 and E2 be any instance of `-IsogenyPath (the worst case). Proceed as follows:

(1) First, generate two random `-isogeny walks ϕi : Ei → E′i such that each E′i is
indistinguishable from uniform.

(2) Call A on input E′1 and E′2 (an average-case instance); it returns an `-isogeny
path ψ : E′1 → E′2 with good probability.

(3) Return ϕ̂2 ◦ ψ ◦ ϕ1.
This is a simple example of a worst-case to average-case reduction.

Design and analysis of algorithms. As a last illustration of the power of random walks in
`-isogeny graphs, we sketch the fastest known algorithm to solve `-IsogenyPath.

Proposition 1.6. The `-IsogenyPath problem can be solved in expected time (` +

log p)O(1) · p1/2.

Sketch of the proof. This can be done by a straigtforward meet-in-the-middle algorithm.
Let n as in Proposition 1.4 such that the output of a random walk of length n is indistin-
guishable from uniform. Then, generate many random walks ϕi : E1 → E′i until one has
found p1/2 distinct targets E′i, and store them. Now, generate random walks ψ : E2 → E
until the random target E is isomorphic to one of the curves E′i (this happens with prob-
ability Ω(p−1/2), so requires an expected number of trials O(p1/2)). For this i, return
ψ̂ ◦ ϕi. �

1.2.4. Higher level isogeny graphs. It is often useful to attach some additional data
to elliptic curves. For instance, fix an integer N > 0, and consider pairs (E,C) where
C ⊂ E[N ] is a cyclic subgroup of order N . We can then consider isogenies that preserve
this structure: an isogeny (E1, C1) → (E2, C2) is an isogeny ϕ : E1 → E2 such that
ϕ(C1) = C2. This naturally leads to a generalization of isogeny graphs, where vertices are
pairs (E,C) and edges are such “structure preserving” isogenies.

This particular example is the isogeny graph with level N Borel structure. They are the
first example of higher level isogeny graphs that appeared in isogeny-based cryptography,
in [[BCC+23]]. In that article, we prove that random walks in these graphs equidistribute
optimally, leading to the first general purpose statistically zero-knowledge proof of isogeny
knowledge (a cryptographic protocol to prove that one knows a solution to `-IsogenyPath
without revealing it). A key observation is that a vertex (E,C) of this graph can be
interpreted as an N -isogeny E → E/C, hence random walks in this graph can be used to
equidistribute not just curves, but isogenies.

Other types of additional data can be attached to elliptic curves, and the corresponding
graphs and random walks have proved to be powerful tools. The most general framework
to date is introduced in our article [[PW24]]. In the rest of this section, we present this
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framework and the corresponding equidistribution result. For the highest level of gen-
erality, we resort to the language of categories. The first category of interest is SSΣ(p),
underlying the standard isogeny graph.
Definition 1.7. Let Σ be a set of prime numbers. The category SSΣ(p) has

• objects: supersingular elliptic curves over Fp;
• morphisms HomΣ(E,E

′): isogenies of degree a product of the primes in Σ.
The next step consists in attaching extra structure to objects of this category. This is

done through the construction of a “category of elements”.
Definition 1.8. Let C be a category and F : C → Sets be a functor. The category of
elements El(F) is the category with

• objects: pairs (c, x) where c ∈ C and x ∈ F(c);
• morphisms (c, x)→ (c′, x′): morphisms f ∈ HomC(c, c′) s.t. F(f)(x) = x′.

Example 1.9. Assume p - N . Let Σ be the set of primes not dividing N . Define the
functor CycN : SSΣ(p)→ Sets by:

• CycN (E) is the set of cyclic subgroups of order N of E;
• for every isogeny ϕ ∈ HomΣ(E,E

′), the map CycN (ϕ) is C 7→ ϕ(C).
Then El(CycN ) is the category of pairs (E,C) where E is a supersingular elliptic curves
and C is a cyclic subgroup of order N — the so-called level N Borel structure used
in [[BCC+23]].
Example 1.10. Let Σ be the set of primes not dividing N . Let End /N denote the func-
tor SSΣ(p)→ Sets defined by

• (End /N)(E) = End(E)/N End(E);
• for ϕ : E → E′, the map (End /N)(ϕ) is α 7→ ϕαϕ̂.

Then El(End /N) is is the category of supersingular elliptic curves equipped with an en-
domorphism modulo N . This example plays an important role in the equivalence between
the problems EndRing and OneEnd presented in Section 1.4.

We now introduce the graphs of interest.
Definition 1.11. Let F : SSΣ(p) → Sets be a functor with F(E) finite for all E. Let
` ∈ Σ be a prime different from p. We define the graph G`F with:

• vertices: isomorphism classes of objects in El(F);
• edges: let (E, x) ∈ El(F); edges from (E, x) are isogenies ϕ ∈ HomΣ(E,E

′) of
degree `, modulo automorphisms of (E′,F(ϕ)(x)).

Returning to Example 1.9, if ` is a prime not dividing Np, the graph G`CycN
is the

`-isogeny graph of supersingular elliptic curves with Borel structure studied in [Arp23]
and [[BCC+23]]. When N = 1 this is the standard supersingular `-isogeny graph.

This general construction of graph G`F is perhaps too general. For random walks
to behave well, one needs the functor F to preserve some of the underlying arithmetic
structure. We require it to satisfy the (mod N)-congruence property.
Definition 1.12. Let F : SSΣ(p) → Sets be a functor and N ≥ 1 an integer. We say
that F satisfies the (mod N)-congruence property if for every E ∈ SS(p) and every ϕ,ψ ∈
EndΣ(E) such that ϕ− ψ ∈ N End(E), we have F(ϕ) = F(ψ).

The functors CycN and End /N from Examples 1.9 and 1.10 above do satisfy the
(mod N)-congruence property.

Stated informally, the equidistribution theorem we prove in [[PW24]] is the following.
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Theorem 1.13 (Informal formulation of [[PW24, Theorem 3.10]]). If F satisfies the (mod N)-
congruence property, then random walks in G`F equidistribute optimally.

The optimality refers to the fact that the graphs can be disconnected or multipartite
(clear obstructions to equidistribution) but the equidistribution is “as good as possible”
under these constraints.

Independently, a similar result was proved by Codogni and Lido [CL23], in the case
where the extra data is of a particular kind: a level structure, expressed in terms of N -
torsion points. Example 1.9 fits in that framework, but Example 1.10 does not. Both
proofs use Deligne’s bounds on coefficients of modular forms, but the proof in [CL23]
is purely algebro-geometric, whereas ours proceeds via the Deuring correspondence and
the Jacquet–Langlands correspondence; as a result, the two proofs could have different
interesting generalisations.

1.3. The `-Isogeny Path and Endomorphism Ring problems

Recall that given an elliptic curve E, an endomorphism is an isogeny from E to itself (or
the zero morphism), and the set of all endomorphisms of E, written End(E), is a ring.
Loops in `-isogeny graphs provide endomorphisms, hinting at a connection between path-
finding problems and computing endomorphism rings. This connection is a fundamental
aspect of isogeny-based cryptography.

The endomorphism ring is always a lattice; and in the supersingular case, it is a lattice
of rank 4. The endomorphism ring problem consists in finding a basis of this lattice.
Problem 1.14 (EndRing). Given a prime p, and a supersingular elliptic curve E over
Fp2 , find four endomorphisms of E (in an efficient representation) that generate End(E)
as a lattice.

The EndRing problem, and its connection to `-IsogenyPath, has been studied as
early as [Koh96], before any cryptographic motivation. With the increasing practical
relevance of these problems, it has become critical to understand their relation. It was soon
suspected that they were equivalent, and heuristic reductions were described in [EHL+18].
The following theorem is the main result from our article [[Wes21]].
Theorem 1.15 ([[Wes21]]). The problems `-IsogenyPath and EndRing are equiva-
lent under probabilistic polynomial time reductions, assuming the Generalized Riemann
Hypothesis.

This section gives an overview of its proof. One of the main ingredients is an important
piece of the underlying theory which will play a role in the rest of this chapter: the Deuring
correspondence.

1.3.1. The Deuring correspondence. The Deuring correspondence states that the
map E 7→ End(E) is essentially a bijection (even an equivalence of categories) between
supersingular elliptic curves and a certain family of rings: maximal orders in a quaternion
algebra Bp,∞.

First, let us define more precisely this family of rings. The quaternion algebra Bp,∞ is
defined as the algebra of dimension 4 over Q with basis 1, i, j, k satisfying the multiplication
rules i2 = −q, j2 = −p, and k = ij = −ji, with

q =


1 if p ≡ 3 mod 4, or
2 if p ≡ 5 mod 8, and otherwise
the smallest prime such that q ≡ 3 mod 4 and

(
p
q

)
= −1.

An order in Bp,∞ is a discrete subring containing a basis of the algebra (i.e., a subring
that is also a lattice of rank 4). It is maximal if not contained in any other order.
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Given a supersingular elliptic curve E over Fp, the endomorphism algebra End(E)⊗ZQ
is isomorphic to Bp,∞. Through this isomorphism, the endomorphism ring End(E) is a
maximal order in the algebra. This so-called Deuring correspondence provides a bijection
between the isomorphism classes{

Isomorphism classes of
supersingular elliptic curves E over Fp2

}
/Gal(Fp2/Fp)←→

{
Isomorphism classes of

maximal orders O in Bp,∞

}
.

The MaxOrder problem. The MaxOrder problem is the computational incarnation of
this bijection.

Problem 1.16 (MaxOrder). Given a prime p, and a supersingular elliptic curve E over
Fp2 , find four quaternions in Bp,∞ that generate a maximal orderO such thatO ∼= End(E).

This problem is similar to EndRing: it asks to compute the endomorphism ring of
a curve. But while EndRing asks for actual endomorphisms that generate End(E), the
MaxOrder problem only asks for the ring structure of End(E), up to isomorphism.

The MaxOrder problem was already identified in [EHL+18] as lying at the heart of
the equivalence between EndRing and `-IsogenyPath. Indeed, following in the footsteps
of [EHL+18], we prove in [[Wes21]] that EndRing and `-IsogenyPath are equivalent by
proving that each is equivalent to MaxOrder.

The correspondence between morphisms. As already mentioned, this correspondence ex-
tends to an equivalence of categories. Morphisms on the side of elliptic curves are isogenies
and the zero morphism. Morphisms on the side of orders are ideals: any left ideal I in
a maximal order O1 is a right ideal in another order O2. The zero ideal is in correspon-
dence with the zero morphism of curves. When I is non-zero, we call it a connecting
ideal between O1 and O2, and we think of it as a morphism from O1 to O2. For such an
ideal I, we call OL(I) = O1 its left order, and OR(I) = O2 its right order. A (non-zero)
morphism from O1 to O2 is a (non-zero) left ideal I in O1 such that OR(I) ∼= O2. The
correspondence between morphisms is defined as follows:

• An isogeny ϕ : E1 → E2, corresponds to the ideal Iϕ = Hom(E2, E1) ◦ ϕ ⊆
End(E1). It is a left ideal in End(E1), and a right ideal in OR(I) ∼= End(E2).
• A left ideal I ⊆ End(E) corresponds to the isogeny ϕI = E → E/E[I] where
E[I] =

⋂
α∈I kerα (at least in the separable case, when the norm of I is coprime

to p).
For any ϕ and I, we have IϕI = I and ϕIϕ = ϕ (up to an isomorphism of the tar-
get). Furthermore, the degree of a non-zero isogeny matches the reduced norm Nrd(I) =√
[OL(I) : I] of the corresponding ideal I.

Remark 1.17. Aspects of this correspondence are better captured when replacing the
category of maximal orders with the category of invertible right O-modules for some
reference maximal order O. See for instance [Voi21, Theorem 42.3.2]. That point of view
avoids issues raised by working up to isomorphism as above.

As MaxOrder asks to compute the map between objects E 7→ End(E), one can ask
the analogous question for morphisms: can the maps ϕ 7→ Iϕ and I 7→ ϕI be computed
efficiently? The first positive answer to this question is the following lemma: we can
translate between isogenies and ideals if we already know the endomorphism ring of the
source curve.

Lemma 1.18. Assuming the Generalized Riemann Hypothesis, there is an algorithm such
that the following holds. Let E0 be a supersingular elliptic curve, O0 an order in Bp,∞,
and ι : O0 −→ End(E0) a bijection (computationally represented by a basis of O0 and an
efficient representations of its image). Then,
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• on input ι and an isogeny ϕ : E0 → E1 (in isogeny path representation), the
algorithm returns the left O0-ideal Iϕ,
• on input ι and a left O0-ideal I, returns the isogeny ϕI (in isogeny path repre-

sentation).
The algorithm runs in polynomial time in the length of the input, and in the largest prime
factor of the degree of ϕ and norm of I.
Sketch of the proof. The technique finds its roots in the heuristic result [GPS20, Lemma 6].
It was revisited in [EHL+18], and the first rigorous algorithm is given in [[Wes21]].

The idea is to first deal with the case where the degree (or norm) is powersmooth:
all its prime-power factors are small. One can then deal with each prime-power factor
independently, and reconstitute the output via the following fact: if I and J are left O0-
ideals of coprime norm, we have kerϕI∩J = kerϕI + kerϕJ . Translating between ideals
and isogenies for a small prime-power factor `e is rather straightforward, as there are O(`e)
possible kernels or ideals, and a correct guess can be validated efficiently.

Dealing with large prime powers is much trickier, and requires reducing the problem to
the powersmooth case. The idea consists in chopping the long isogeny path (or ideal) into
smaller chunks, and iteratively find powersmooth alternative paths to each intermediate
step. There lies the technical heart of [[Wes21]]: an algorithm which, on input a left
O0-ideal, finds an equivalent ideal whose norm is powersmooth (two left O0-ideals are
equivalent if their right orders are isomorphic). A heuristic algorithm for this task was first
presented in [KLPT14], known as the KLPT algorithm. We prove in [[Wes21, Theorem 6.4]]
that the same task can be performed assuming only GRH. �

1.3.2. The quaternion analog of the `-IsogenyPath problem. Through the Deur-
ing correspondence, a computational problem involving supersingular elliptic curves can
be translated into a computational problem involving quaternions. For instance, as the
`-IsogenyPath problem asks one to find an isogeny of degree a power of ` between two
curves, its quaternionic analog is: given two (isomorphism classes of) maximal orders O1

and O2, find an ideal of norm a power of ` connecting them.
While `-IsogenyPath is believed to be hard, this quaternion version turns out to

be easy. The first heuristic resolution of this problem is the KLPT algorithm [KLPT14],
already mentioned in the proof of Lemma 1.18. In the article [[Wes21]], we prove that it
can be solved in polynomial time assuming GRH.
Theorem 1.19 (Special case of [[Wes21, Theorem 6.3]]). There is an algorithm which given
two maximal orders O1 and O2 in Bp,∞ and a prime `, finds a left O1-ideal I of norm a
power of ` such that OR(I) ∼= O2, and runs in expected polynomial time in ` and in the
size of the input, assuming the Generalized Riemann Hypothesis.

The reader may already see how this could help reducing `-IsogenyPath to MaxOrder:
an oracle for MaxOrder can turn an instance of `-IsogenyPath into an instance of its
quaternionic analog, which is easy. We would then need to translate the quaternionic
solution back to an isogeny, perhaps with Lemma 1.18, but that requires an additional
ingredient.

1.3.3. Finding a reference supersingular elliptic curve. The translation between
ideals and isogenies with Lemma 1.18 plays a key role in proving that the three problems
`-IsogenyPath, MaxOrder and EndRing are equivalent. Yet, applying the lemma
requires prior knowledge of the endomorphism ring of one of the curves involved. We
are thus interested in generating a “reference” curve, a special supersingular elliptic curve
E0 for which we know, by construction, a solution to both MaxOrder and EndRing.
Then, Lemma 1.18 can be used to connect instances of `-IsogenyPath, MaxOrder or
EndRing to that reference curve E0.
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Such “special” elliptic curves can be found by turning to the usual suspects, such as
the elliptic curves of j-invariant 0 or 1728. Which curve to pick depends on the congruence
class of p mod 8, but the general idea is always the same: find an elliptic curve over Q
which has supersingular reduction modulo p, and has complex multiplication by an order
of small discriminant. Then, the Frobenius endomorphism πp together with the reduction
of the complex multiplication already reveals a large part of the endomorphism ring.

Lemma 1.20 ([EHL+18, Proposition 3]). There is an algorithm that for any prime p > 2
computes an elliptic curve E0 over Fp, a basis (1, α1, α2, α3) of a maximal order O0 of
Bp,∞, and three endomorphisms β1, β2, β3 of E0 (in efficient representation), such that

O0 −→ End(E0) : 1, α1, α2, α3 7−→ [1], β1, β2, β3

is an isomorphism, and runs in time polynomial in log p (if p ≡ 1 mod 8, we assume
GRH).

Sketch of the proof. If p ≡ 3 mod 4, then the curve E0 defined by y2 = x3 − x is super-
singular. It is defined over Fp, so has the Frobenius endomorphism π : (x, y) 7→ (xp, yp).
Furthermore, if α ∈ Fp2 satisfies α2 = −1, it is easy to check that ι : (x, y) 7→ (−x, αy) is
also an endomorphism. These endomorphisms generate almost all End(E0): we actually
have

End(E0) = Z⊕ Zι⊕ Z ι+ ιπ

2
⊕ Z1 + π

2
.

Therefore we can consider (β1, β2, β3) = (ι, ι+ιπ
2 , 1+π

2 ). Since ι2 = [−1] and π2 = [−p], we
can set the corresponding quaternions (α1, α2, α3) = (i, i+ij

2 , 1+j
2 ). The case p ≡ 5 mod 8

enjoys similar explicit formulae, and the case p ≡ 1 mod 8 requires to first find a small
quadratic non-residue q modulo p (hence the need for GRH), then generate an elliptic
curve over Q with complex multiplication by

√
−q (hence the need for q to be small). �

1.3.4. `-IsogenyPath is equivalent to MaxOrder. We now have all the ingredients
to sketch the proof that `-IsogenyPath is equivalent to MaxOrder.

MaxOrder reduces to `-IsogenyPath. Suppose we wish to solve MaxOrder for some
elliptic curve E, and we have access to an oracle for `-IsogenyPath.

From Lemma 1.20, we can find a supersingular curve E0 together with a maximal
order O0 and an isomorphism O0 −→ End(E0). Using the oracle for `-IsogenyPath, one
can find an isogeny path ϕ : E0 → E. It remains to “transport” the information from E0

along the path to E. This is where Lemma 1.18 comes in: one can compute the ideal Iϕ,
then return the right-order of Iϕ, which is isomorphic to End(E).

`-IsogenyPath reduces to MaxOrder. Suppose we wish to solve `-IsogenyPath for
two elliptic curve E1 and E2, and we have access to an oracle for MaxOrder.

It is enough to show how to find an `-isogeny path E0 → E1 for the special curve E0

from Lemma 1.20. Indeed, the same can be applied to E0 → E2, and the composition
gives a path E1 → E2. Now, the oracle for MaxOrder reveals an order O1 isomorphic
to End(E1). There is an efficient algorithm to find a connecting ideal between O0 and
O1 [KV10, Algorithm 3.5]. One can then find an equivalent ideal of norm a power of `
(thanks to Lemma 1.19), and use Lemma 1.18 to translate this ideal to the corresponding
isogeny: a `-isogeny path E0 → E1.

1.3.5. MaxOrder is equivalent to EndRing. Finally, we sketch the proof that the
problems MaxOrder and EndRing are equivalent.
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MaxOrder reduces to EndRing. The reduction from MaxOrder to EndRing is per-
haps the least surprising direction. On one hand, the endomorphism ring End(E) is a Eu-
clidean lattice with the positive definite integral quadratic form deg : End(E)→ Z. On the
other hand, the algebra Bp,∞ is a Euclidean space with the reduced norm Nrd : Bp,∞ → Z.
A ring embedding End(E)→ Bp,∞ preserves the Euclidean structure. The idea is thus to
find a subring in Bp,∞ that has the same “geometry” as End(E), and deduce that they
are isomorphic as rings.

Concretely, from a basis (βi)
4
i=1 of the lattice End(E), one can compute the Gram

matrix (〈βi, βj〉)4i,j=1, then find a basis of Bp,∞ with the same Gram matrix. This amounts
to solving a few homogeneous quadratic equations over Q, which can be done with [Sim05,
Sim06].

EndRing reduces to MaxOrder. The reduction from EndRing to MaxOrder may
appear more difficult, as solving EndRing requires finding actual endomorphisms of E,
while solving MaxOrder only seems to provide abstract “quaternionic” information on
the endomorphism ring. The idea is to relate E to the reference curve E0 for which
we know both actual endomorphisms and an embedding in the quaternion world. The
reduction works as follows.

(1) Generate E0 together with an isomorphism ι : O0 → End(E0) (Lemma 1.20).
(2) Solve MaxOrder to find an order O in Bp,∞ isomorphic to End(E).
(3) Find a connecting ideal I between O0 and O ([KV10, Algorithm 3.5]).
(4) Find the corresponding isogeny ϕI : E0 → E (Lemma 1.18).
(5) We obtain an isomorphism of algebras

(1.1)  : End(E0)⊗Q −→ End(E)⊗Q : β 7−→ (ϕI ◦ β ◦ ϕ̂I)⊗
1

deg(ϕI)
.

(6) The composition  ◦ (ι⊗Q) : Bp,∞ → End(E)⊗Q is also an isomorphism.
(7) Output the basis of  ◦ (ι⊗Q)(O) = End(E).

Of course, one should ensure that the output basis consists of endomorphisms in efficient
representation. There a several ways to do this. The main obstacle is the division by
deg(ϕI) in the map (1.1). The originally proposed solution is to ensure that deg(ϕI) is
powersmooth, so there is an efficient algorithm to divide points. Alternatively, a more
recent algorithm allows to divide any endomorphism in efficient representation by any
integer [[HW23, Theorem 4.1]] (see Section 2.4.1).

1.4. Finding one endomorphism is as hard as finding them all

While the endomorphism ring problem asks to find, in a sense, all the endomorphisms of
a supersingular curve, it has appeared hard to find even a single one. Scalar multiplica-
tions [m] for m ∈ Z are trivial to find, so we exclude them. This is the (supersingular)
one endomorphism problem.

Problem 1.21 (OneEnd). Given a prime p and a supersingular elliptic curve E over
Fp2 , find an endomorphism in End(E) \ Z in efficient representation.

The connection between EndRing and OneEnd bears important consequences on the
hardness of EndRing and on its connection with variants of the isogeny problem. On the
cryptographic side, the OneEnd problem naturally emerges when analyzing the security
of certain schemes. Most notably, it is easy to prove that some version of the CGL hash
function is collision-resistant if OneEnd is hard. This result alone is unsatisfactory, as
OneEnd seems, at first glance, simpler that the pinnacle problem of the field, EndRing.
Unfortunately, former heuristic arguments suggesting that OneEnd should be as hard as
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EndRing do not withstand close scrutiny, and actually fail in simple cases.

In the article [[PW24]], we prove the following theorem.

Theorem 1.22 ([[PW24, Theorem 1.1]]). The EndRing and OneEnd problems are equiv-
alent, under probabilistic polynomial time reductions.

In Section 1.4.1 below, we present the proof strategy. This theorem was our moti-
vation to prove the general rapid-mixing in higher level isogeny graphs, Theorem 1.13.
In Section 1.4.2, we present a few important consequences of this theorem: the collision-
resistance of the CGL hash function, the equivalence between EndRing and the “pure”
Isogeny problem, and the fastest known unconditional algorithm to solve EndRing.

1.4.1. Proving that EndRing reduces to OneEnd. The ideas behind our reduction
are as follows. Assume we have an oracle O for OneEnd and we want to compute End(E)
for a given E.

The ring End(E) is a lattice of dimension 4 and volume p/4 (with respect to the qua-
dratic form deg : End(E) → Z). A solution of EndRing consists in four endomorphisms
that generate all the others. Given a collection of endomorphisms, one can decide whether
they generate the whole ring End(E) by computing the volume of the lattice they gener-
ate, and comparing it to p/4. Once a generating set has been found, it is easy to deduce
a basis.

A first flawed attempt. We thus need a way to generate several endomorphisms of E.
Naively, one could repeatedly call O(E), hoping to eventually obtain a generating set.
This can fail, for instance if the oracle is deterministic and O(E) always returns the same
endomorphism.

To circumvent this issue, it was proposed in [EHL+18] to randomise the curve. More
precisely, one constructs a richer, randomised oracle RichO from O as follows. On input
E, walk randomly on the 2-isogeny graph, resulting in an isogeny ϕ : E → E′. This graph
has rapid mixing properties, so E′ is close to uniformly distributed among supersingular
curves. Now, call the oracle O on E′, to get an endomorphism β ∈ End(E′). The
composition α = ϕ̂ ◦ β ◦ ϕ is an endomorphism of E, the output of RichO .

With this randomisation, there is hope that calling RichO repeatedly on E could yield
several independent endomorphisms that would eventually generate End(E). This method
is essentially what is proposed in [EHL+18, Algorithm 8]. In that article, it is heuristically
assumed that endomorphisms produced by RichO are very nicely distributed, and they
deduce that a generating set for End(E) is rapidly obtained. This heuristic has a critical
flaw: one can construct oracles that contradict it. Consider an integer M > 1, and
suppose that for any input E, the oracle O returns an endomorphism from the strict
subring Z+M End(E). Then, the above algorithm would fail, because the randomisation
RichO would still be stuck within the subring Z+M End(E). Worse, juggling with several
related integers M , we will see that there are oracles for which this algorithm only stabilises
after an exponential time.

Invariance by conjugation. The core of our method rests on the idea that this issue is,
in essence, the only possible obstruction. The key is invariance by conjugation. If ϕ,ϕ′ :
E → E′ are two random walks of the same length, and β is an endomorphism of End(E′),
the elements α = ϕ̂ ◦ β ◦ϕ and α′ = ϕ̂′ ◦ β ◦ϕ′ are equally likely outputs of RichO . These
two elements are conjugates of each other in End(E)/N End(E) for any odd integer N , as

α =
ϕ̂ ◦ ϕ′

[deg(ϕ′)]
◦ α′ ◦ ϕ̂′ ◦ ϕ

[deg(ϕ′)]
mod N.
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From there, one can prove that the output of RichO follows a distribution that is invariant
by conjugation: each output is as likely as any of its conjugates, modulo odd integers N
(up to some bound). It is a consequence of Theorem 1.13, our general equidistribution
result.

Intuitively, for the outputs of RichO to be “stuck” in a subring (such as Z+M End(E)
above), that subring must itself be stable by conjugation (modulo odd integers N). There
comes the next key: every subring of End(E) (of finite index not divisible by p) stable by
conjugation modulo all integers is of the form Z+M End(E). So samples from RichO must
eventually generate a ring of the form Z+M End(E). From a basis of Z+M End(E), it is
easy to recover a basis of End(E) essentially by dividing by M (using a method developed
in [Rob22] and [[HW23, Theorem 4.1]]).

Local obstructions. This intuition does not immediately translate into an algorithm, as
an oracle could be “bad” without really being stuck in a subring. Imagine an oracle that
outputs an element of Z + 2e End(E) (and not in Z + 2e+1 End(E)) with probability 2e−n

for each e ∈ [0, . . . , n−1]. A sequence of samples (αi)i would eventually generate End(E),
but only after an amount of time exponential in n. This particular case could be resolved
as follows: for each sample α, identify the largest e such that β = (2α − Tr(α))/2e is
an endomorphism. A sequence of samples (βi)i would rapidly generate Z + 2End(E),
from which one easily recovers End(E). This resolution first identifies the prime 2 as the
source of the obstruction, then “reduces” each sample “at 2”. In general, such obstructive
primes would appear as factors of disc(α). Identifying these primes, and ensuring that
each sample is “reduced” at each of them, one gets, in principle, a complete algorithm.
However, factoring disc(α) could be hard. Instead, we implement an optimistic approach:
we identify obstructive pseudo-primes using a polynomial time partial-factoring algorithm.
The factors may still be composite, but it is fine: the algorithm will either behave as if
they were prime, or reveal a new factor.

1.4.2. Consequences. We now discuss some consequences of Theorem 1.22.

1.4.2.1. Collision resistance of the Charles–Goren–Lauter hash function. The first cryp-
tographic construction based on the supersingular isogeny problem is the CGL hash func-
tion [CLG09]

CGLE0 : {0, . . . , `− 1}∗ −→ Fp2 ,

introduced in Section 1.2.3. Recall that any binary string x ∈ {0, . . . , `− 1}∗ encodes a
non-backtracking random walk ϕx : E0 → Ex from a source E0 in the 2-isogeny graph,
and CGLE0(x) = j(Ex) is the j-invariant of the target of this walk. As discussed in
Section 1.2.3, using the rapid equidistribution of random walks, it is rather straightforward
to prove that if `-IsogenyPath is hard, then CGLE0 is preimage-resistant.

Its resistance to collisions is considerably more delicate. A collision for CGLE0 is a
pair of distinct inputs x, x′ ∈ {0, . . . , `− 1}∗ such that CGLE0(x) = CGLE0(x

′). In other
words, a collision consists in two distinct paths ϕx, ϕx′ : E0 → E′ to the same target E′
(up to isomorphism). The composition ϕ̂x′ ◦ ϕx is a non-scalar endomorphism of E0. At
first glance, this is good news: if OneEnd is hard for E0, then finding collisions is hard.

This reasoning also hints at a weakness: one who already knows End(E0) could perhaps
find collisions in polynomial time. This is indeed the case [EHL+18]. To prove collision-
resistance from the hardness of EndRing, one must consider a family of hash functions
CGLE where E is random. Let SampleSS(p) be an algorithm sampling a uniformly
random supersingular elliptic curve over Fp2 . We define the advantage of a collision-finding
algorithm A for the CGL family of hash functions as

AdvA
CGL(p) = Pr

[
m 6= m′ and E ← SampleSS(p)

CGLE(m) = CGLE(m
′) (m,m′)← A (E)

]
.
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The hash function is collision-resistant if all efficient algorithms A have negligibly small
advantage. It was heuristically argued in [EHL+18] that the collision-resistance of this
construction is equivalent to EndRing. Theorem 1.22 unlocks the proof: in [[PW24]], we
prove that a collision-finding algorithm with good running time and advantage can solve
EndRing efficiently.

Theorem 1.23 (Collision-resistance of the CGL hash function, [[PW24, Theorem 8.1]]).
For any algorithm A , there is an algorithm to solve EndRing in expected polynomial
time in log(p), in AdvA

CGL(p)
−1 and in the expected running time of A .

Sketch of the proof. Since EndRing is equivalent to OneEnd (Theorem 1.22), it is suffi-
cient to prove that A can be used to solve OneEnd. First, we observe that a successful
collision for CGLE gives a non-scalar endomorphism of E: if ϕ,ψ : E → E′ are two distinct
non-backtracking walks, then ϕ̂ ◦ ψ ∈ End(E) \ Z.

Therefore, the algorithm A finding a collision for CGLE′ (with good probability for
uniformly random E′) in fact solves OneEnd (with good probability for uniformly random
E′). To solve OneEnd on an arbitrary (non-random) input E, one first computes a random
walk ϕ : E → E′ with uniformly random target E′, calls the oracle to find α ∈ End(E′)\Z,
and returns ϕ̂ ◦ α ◦ ϕ ∈ End(E) \ Z. �

1.4.2.2. The endomorphism ring problem is equivalent to the isogeny problem. We have
already established that the problem EndRing is equivalent to `-IsogenyPath (assuming
the Generalised Riemann Hypothesis, Theorem 1.15). The latter problem asks to find
isogenies of a very specific form: `-isogeny paths. Lifting this restriction yields the more
general Isogeny problem.

Problem 1.24 (Isogeny). Given a prime p and two supersingular elliptic curves E and
E′ over Fp2 , find an isogeny from E to E′ in efficient representation.

From Theorem 1.15, it is easy to see that Isogeny reduces to EndRing.

Proposition 1.25. Assuming the Generalised Riemann Hypothesis, the problem Isogeny
reduces to EndRing in probabilistic polynomial time.

Proof. The Isogeny problem immediately reduces to `-IsogenyPath, which is equivalent
to EndRing (Theorem 1.15). �

The converse reduction is trickier. As a solution to Isogeny is not guaranteed to have
smooth degree, previous techniques have failed to prove that it is equivalent to EndRing.
Theorem 1.22 unlocks this equivalence. Better yet, Theorem 1.26 below is unconditional.
In particular, it implies that EndRing reduces to the `-IsogenyPath independently of
the Generalised Riemann Hypothesis.

Theorem 1.26 ([[PW24, Theorem 8.6]]). The EndRing problem reduces to Isogeny in
probabilistic polynomial time.

Sketch of the proof. Since EndRing is equivalent to OneEnd (Theorem 1.22), it suffices
to prove that OneEnd reduced to Isogeny. Let E be a supersingular curve for which we
want to solve OneEnd, and let A be an algorithm for Isogeny. The idea is quite simple:
generate a random walk ϕ : E → E′, then call A to find an isogeny ψ : E′ → E, and
return ψ ◦ϕ ∈ End(E). The unpredictibility of ϕ makes it possible to prove that whatever
A does, the endomorphism ψ ◦ ϕ is non-scalar with overwhelming probability. �

1.4.2.3. An unconditional algorithm for EndRing in time Õ(p1/2). We have established
EndRing as a (or the) foundational problem of isogeny-based cryptography: all rests on its
presumed hardness. But how hard is it? The fastest known algorithms have complexity
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in Õ(p1/2). However, all previous algorithms reaching that complexity have relied on
unproven assumptions such as the Generalised Riemann Hypothesis.

With Theorem 1.22, we can prove that EndRing can be solved in time Õ(p1/2) uncon-
ditionally. In contrast, the previous fastest unconditional algorithm had complexity Õ(p)
and only returned a full-rank subring of the endomorphism ring [Koh96, Theorem 75].

The first method to reach complexity Õ(p1/2) under the Generalised Riemann Hypoth-
esis consists in reducing EndRing to `-IsogenyPath (with Theorem 1.15), and solving
`-IsogenyPath by a generic graph path-finding algorithm (with Proposition 1.6). Un-
conditionally, we can follow the same strategy, but using the unconditionally reduction
from EndRing to `-IsogenyPath (Theorem 1.26).

Theorem 1.27 ([[PW24, Theorem 8.8]]). There is an algorithm solving the EndRing
problem in expected time Õ

(
p1/2

)
.

Proof. This follows from the fact that there is an algorithm of complexity Õ
(
p1/2

)
for the

2-isogeny path problem (a folklore meet-in-the-middle strategy, see Proposition 1.6), and
EndRing reduces to polynomially many instances of `-IsogenyPath (Theorem 1.26). �

1.5. The fall of SIDH

Supersingular Isogeny Diffie-Hellman (SIDH) is a key exchange protocol proposed in 2011
by Jao and De Feo [JD11]. For the following eleven years, it was the crown jewel of
isogeny-based cryptography. The influence of SIDH is notably illustrated by its incarnation
Supersingular Isogeny Key Encapsulation (SIKE) [JAC+17], a primitive submitted to the
call for standardization of new quantum-safe cryptographic primitives by the American
National Institute of Standards and Technology (NIST). SIKE reached the final round of
the process in 2022.

Yet, the security of SIDH (hence, SIKE) is not guaranteed by the hardness of the
“pure” isogeny problem. It instead relies on a variant, where the image of some torsion
points under a hidden isogeny are also revealed. This has come to be known as the
supersingular isogeny with torsion (SSI-T) problem. It can be seen as an interpolation
problem, which we formalise as follows.

Problem 1.28 (Interpolation). Let ϕ : E → E′ be an isogeny. Given E, E′, some
points Pi ∈ E and their images ϕ(Pi), and a point Q ∈ E, compute ϕ(Q).

This problem comes with a spectrum of difficulty, according to how many points are
revealed — or more precisely, according to the order of the group generated by the revealed
points. This problem has been shown to be weaker than the pure isogeny problem in a
line of work pioneered by Petit [Pet17] in 2017 and expanded by multiple papers in the
following years [KMP+21, BdQL+19, FKMT22]. SIDH remained immune to these attacks:
they only tackled versions of Interpolation where the revealed points have large order
— much larger than the points revealed by SIDH.

That was until 2022, when Castryck and Decru published a preprint [CD23] solving
this problem in polynomial time for SIDH parameters, and effectively breaking even the
highest security levels of SIKE. An earthquake in the isogeny world. A rapid series of
works followed, culminating in a complete break of the Interpolation problem in any
regime where the input fully determines the hidden isogeny, and the provided points have
smooth order.

Our contribution to the attack first came in the form of the preprint [[Wes22b]], later
published in the merged article [[MMP+23]]. In the preprint:

• We improve the efficiency of the attack, describing a much more direct approach
than [CD23]. Essentially, Castryck and Decru reconstitute the isogeny bit-by-bit,
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with iterative trial and error. In contrast, the algorithm in [[Wes22b, MMP+23]]
recovers the secret in one go, dividing the complexity by the bit-length of the
isogeny. As a result, the attack has become fast enough for constructive ap-
plications: it runs in a matter of milliseconds for interesting sets of parame-
ters [[BDD+24]].
• We prove that the algorithm runs in polynomial time, assuming the Generalised

Riemann Hypothesis, when the endomorphism ring of the domain curve is known
(as in SIKE). In contrast, the original attack relied on heuristic assumptions.
When the endomorphism ring is not known, we point out that the complexity is
heuristically subexponential.

Robert then broke another barrier in [Rob23], proving that the polynomial running
time can be reached even when the endomorphism ring of the source is not known.

1.5.1. Isogeny interpolation. In this section we choose to present the algorithm in a
rather elementary form as in [[Wes22b]], yet including the powerful trick of Robert [Rob23].
The resulting Theorem 1.29 is close to the most general version known today, and benefits
from a simple proof. Simple enough, perhaps, that the reader may come to wonder how
it was missed for eleven years of scrutinizing SIDH.
Theorem 1.29. Let ϕ : E → E′ be an isogeny. Given:

• E, E′, deg(ϕ),
• an integer N > deg(ϕ) coprime to deg(ϕ),
• a basis (P1, P2) of E[N ],
• the images ϕ(P1) and ϕ(P2),
• and a point Q ∈ E,

one can compute ϕ(Q) (or assert that the input is ill-formed) in polynomial time in the
length of the input and in the largest prime factor of N .
Remark 1.30. Note that the statement can be improved by a number of other tricks: one
can remove the coprimality condition, loosen the bound to N2 � deg(ϕ), or replace E[N ]
with more general subgroups.

The critical insight of Castryck and Decru came from looking at isogenies in higher
dimension. For a complete picture of the situation, one should delve into the theory
of abelian varieties, but for the simplified exposition below, it is sufficient to consider
products of elliptic curves. A product E1 × · · · ×En is an abelian variety of dimension n.
Definition 1.31. Consider elliptic curves E1, . . . , En, E

′
1, . . . , E

′
n, and isogenies ϕi,j : Ei →

E′j . The matrix M = (ϕi,j)i,j defines a map

Φ : E1 × · · · × En −→ E′1 × · · · × E′n : (Pi)i 7−→

(∑
i

ϕi,j(Pi)

)
j

.

We call M̃ = (ϕ̂j,i)i,j the dual matrix, which induces the map

Φ̃ : E′1 × · · · × E′n −→ E1 × · · · × En : (Pi)i 7−→

(∑
i

ϕ̂j,i(Pi)

)
j

.

We say that Φ is an N -isogeny, for N ∈ Z>0, if M̃M = N ·In (with In the identity matrix).
These N -isogenies are higher-dimensional analogs of “isogenies of degree N”. In par-

ticular, when N is coprime to the characteristic p, an N -isogeny is determined by its kernel
(which has order Nn), up to automorphisms of the target. A generalisation of Vélu’s for-
mulae allows to compute an N -isogeny from its kernel, in time polynomial in the largest
prime factor of N . We are going to use the following simplified version of that fact.
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Lemma 1.32. There is an algorithm such that for any N -isogeny Φ : X → Y over Fq the
following holds: given X, Y , a generating set of ker(Φ), and points (Pi)

k
i=1 ∈ X(Fq)

k, the
algorithm returns (ν ◦ Φ(Pi))

k
i=1 for some ν ∈ Aut(Y ) in polynomial time in q and in the

largest prime factor of N .

The reader familiar with theta models of abelian varieties can deduce this lemma
from [LR12].

The strategy of the attack is the following. There is a secret isogeny ϕ : E → E′,
which we only know how to evaluate on the N -torsion, for some N (indeed, we know the
image of a basis of E[N ], and N being smooth, we can efficiently rewrite any N -torsion
point as a combination of the basis points, by a discrete logarithm computation). We can
craft a matrix of isogenies containing ϕ as one of the entries, and the other entries are
carefully chosen for the resulting matrix to define an N -isogeny. Each entry of the matrix
can be evaluated on the N -torsion, which allows us the reconstruct the kernel (a subgroup
of the N -torsion). From the kernel, we can evaluate the N -isogeny on any other input
(Lemma 1.32), which in turn allows us to evaluate any entry of the matrix, including ϕ,
on any input.

This strategy is most easily implemented when N − deg(ϕ) is a perfect square.

Proposition 1.33. Theorem 1.29 holds if A = N − deg(ϕ) is a perfect square.

Sketch of the proof. Let a =
√
A ∈ Z. Consider the isogeny

Ψ =

(
[a] −ϕ̂
ϕ [a]

)
: E × E′ −→ E × E′.

Let ι : E → E × E′ be the inclusion and π : E × E′ → E′ be the projection. We have
π ◦Ψ ◦ ι(Q) = π ◦Ψ(Q, 0) = π([a]Q,ϕ(Q)) = ϕ(Q).

Therefore, if we can evaluate Ψ, we can evaluate ϕ = π ◦ Ψ ◦ ι. We show that we can
evaluate Ψ by proving that it is an N -isogeny, and we know its kernel. Indeed, we have

Ψ̂ ◦Ψ =

(
[a] ϕ̂
−ϕ [a]

)(
[a] −ϕ̂
ϕ [a]

)
=

(
[a2 + deg(ϕ)] 0

0 [a2 + deg(ϕ)]

)
= N · I2,

so Ψ is an N -isogeny. Furthermore, we have
ker(Ψ) = {(P,Q) ∈ (E × E′)[N ] | [a]P = ϕ̂(Q) and ϕ(P ) = −[a]Q}

= {([−a]P,ϕ(P )) | P ∈ E[N ]}
= 〈([−a]P1, ϕ(P1)), ([−a]P2, ϕ(P2))〉 ,

so we have a generating set for ker(Ψ). By Lemma 1.32, we can evaluate Ψ at any point.
Therefore, we can compute ϕ(Q) by evaluating π ◦Ψ ◦ ι(Q). Note that Lemma 1.32 only
evaluates ν ◦ ϕ for some unknown ν ∈ Aut(E). This defect can be corrected by applying
the evaluation algorithm to (P1, P2, Q), which returns (ν◦ϕ(P1), ν◦ϕ(P2), ν◦ϕ(Q)). Then,
one can recover ν as the unique automorphism sending each ϕ(Pi) to ν ◦ ϕ(Pi). �

The general case with known endomorphism ring. Of course, one cannot generally expect
A to be a perfect square. This assumption is used to build an isogeny from E of degree
A: the isogeny [a] : E → E. For arbitrary A, the very same method can be adapted
if one knows an isogeny γ : E → C of degree A: simply use γ in place of [a]. Given
the endomorphism ring of E, one can always find such an isogeny γ in polynomial time
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(assuming GRH [[Wes22b]]), which proves that SIDH is broken in the special case where
the endomorphism ring of the source curve E is known.

The general case. The final nail in SIDH’s coffin was hammered by Robert [Rob23], by
using endomorphisms in higher dimension. The case where A = N − deg(ϕ) is a perfect
square leverages the fact that End(E) contains a very simple endomorphism of norm A:
multiplication by

√
A. Robert observed that if A is a sum of two squares, then End(E×E)

contains a similarly simple endomorphism of norm A. Writing N − deg(ϕ) = a2 + b2, we
can do the same as above with

Ψ =


a b −ϕ̂ 0
−b a 0 −ϕ̂
ϕ 0 a −b
0 ϕ b a

 .

Not every integer is a sum of two squares, but all are sums of four squares. In all generality,
one can write N − deg(ϕ) = a2 + b2 + c2 + d2, and use the matrix

Ψ =



a −b −c −d −ϕ̂ 0 0 0
b a d −c 0 −ϕ̂ 0 0
c −d a b 0 0 −ϕ̂ 0
d c −b a 0 0 0 −ϕ̂
ϕ 0 0 0 a b c d
0 ϕ 0 0 −b a −d c
0 0 ϕ 0 −c d a −b
0 0 0 ϕ −d −c b a


.

This proves Theorem 1.29.

1.5.2. The post-SIDH era. While the resolution of the Interpolation problem in
polynomial time put an end to SIDH, it has not affected the core problems of isogeny-
based cryptography: EndRing and its friends.

Since its devastating entrance, the interpolation algorithm has become a powerful con-
structive tool for isogeny-based cryptography. Indeed, it provides a new way to represent
isogenies: given the degree d, a basis (P1, P2) of the N -torsion of the source (for some
large enough, smooth N), and the images (ϕ(P1), ϕ(P2)), one can evaluate the isogeny
ϕ on any other input. In other words, the tuple (d, P1, P2, ϕ(P1), ϕ(P2)) is an efficient
representation of ϕ — called the interpolation representation, or the HD representation
due to the role of higher dimensions. Contrary to previous methods like the isogeny-path
representation, it works for arbitrary isogenies, even with large prime degree. In fact, it
is in a sense a universal efficient representation: any efficient representation of an isogeny
can be converted to an interpolation representation in polynomial time.

The first constructive application of this method was the digital signature scheme
SQIsignHD, discussed in the next section. The subsequent “HD rush” [CLP23, BMP23,
Ler23] came along practical improvements of the “HD machinery”: fast algorithms to
evaluate isogenies in higher dimension [Kun22, DMPR23].

1.6. The development of SQIsign

So far, we have focused on the theoretical foundations and cryptanalysis of isogeny-based
cryptography. We conclude this chapter with a constructive contribution: the SQIsign
digital signature scheme [[DKL+20, DLRW24]], whose development is intertwined with all
previously presented results.

There had been several attempts at building an isogeny-based digital signature scheme
before SQIsign. However, they were impractically slow, requiring several seconds [YAJ+17],
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minutes [DG19], or more [GPS20] to sign and verify. The most efficient candidate was CSI-
Fish [BKV19] which still takes approximately half a second to sign or verify, and requires a
costly sub-exponential precomputation (currently out of reach beyond the lowest security
level).

The design philosophy of SQIsign is rooted in the equivalence between EndRing and
`-IsogenyPath presented in Section 1.3. The idea is the following. In a digital signature
scheme, a signer holds a secret key sk and a public key pk. A signature scheme consists in

(1) a signing procedure: on input the secret key sk, and a message m, the signer
produces a signature σ. We expect this task to absolutely require knowledge of
the secret key, so only the legitimate key holder can produce a valid signature.

(2) a verification procedure: on input the public key pk, a message m, and a signature
σ, the verification certifies whether or not σ was indeed produced by the signing
procedure on input m, with the secret key associated to pk.

In SQIsign, the public key is a supersingular elliptic curve pk = E, and the secret key is its
endomorphism ring sk = End(E). Recovering the secret key End(E) from the public key
E is precisely EndRing, a supposedly hard problem. This is a good start. To design a
signing procedure, we need a task that can only be performed with knowledge of End(E).
This is where the equivalence between EndRing and `-IsogenyPath comes in. At least
on an intuitive level, if signing requires solving an instance of `-IsogenyPath involving
E, the signer must know End(E), the secret key. This suggests a signing procedure of this
form: let the message m encode some supersingular elliptic curve Em. Using knowledge
of End(E), the signer solves `-IsogenyPath between E and Em. The signature is an
`-isogeny path σ : E → Em. A verifier would recompute Em, and check that σ is indeed
a path between the “message curve” Em and the public key E.

1.6.1. The SQIsign identification protocol. To turn this intuition into a secure
scheme, it is useful to first design an identification protocol. An identification proto-
col provides more flexibility, and can be transformed into a signature scheme by standard
techniques (e.g., via the Fiat-Shamir transform [FS86]). A prover (instead of a signer)
knows the pair (sk, pk), and tries to convince a verifier (who knows only pk) that they
know the secret sk. The main difference with a signature scheme is that the prover and
verifier can directly interact, exchanging messages back and forth.

The SQIsign identification protocol, introduced in [[DKL+20]], has the following struc-
ture (which the reader may recognize to be a sigma protocol):

(1) Commitment phase: the prover generates a random pair (Ecom,End(Ecom)).
They keep End(Ecom) secret, and send Ecom to the verifier.

(2) Challenge phase: the verifier generates a non-backtracking random walk ϕchl :
E → Echl of length n in the 2-isogeny graph (for some fixed n). In other words,
ϕchl is a random isogeny of degree 2n with cyclic kernel. The verifier sends ϕchl
to the prover.

(3) Response phase: knowing the secret key sk = End(E) and ϕchl : E → Echl, the
prover can compute End(Echl). Now, knowing both End(Echl) and End(Ecom),
the prover can compute an isogeny ϕrsp : Ecom → Echl. The prover sends ϕrsp to
the verifier.

(4) Verification phase: the verifier checks that ϕrsp is indeed an isogeny connecting
the commitment curve Ecom to the challenge curve Echl.

Intuitively, at the end of a successful interaction, the verifier should be convinced because
they saw the prover solve an instance of `-IsogenyPath involving E — a task that should
require knowledge of End(E). More precisely, the instance involves Echl rather than E,
but given the isogeny ϕchl : E → Echl, knowledge of End(E) is equivalent to knowledge of
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End(Echl). Of course, we will give a formal argument, but first, a fatal flaw needs to be
fixed. As it is presented, a cheating prover (who does not know the secret End(E)) can
fool the verifier. Indeed, the cheating prover could generate a commitment curve Ecom
by choosing a random isogeny ϕcheat

com : E → Ecom. They may not be able to compute
End(Ecom), but it does not matter. In response to a challenge ϕchl : E → Echl, they would
simply respond with ϕcheat

rsp = ϕchl ◦ ϕ̂cheat
com .

There is a simple fix to this issue, by ensuring that no part of the response ϕrsp factors
through the challenge ϕchl. More precisely: the prover ensures (and the verifier checks)
that ϕ̂chl ◦ ϕrsp has cyclic kernel.

1.6.2. Special soundness. With this fix, one can actually prove that this protocol
“proves knowledge” of at least some non-trivial part of End(E). Proving knowledge can
be formalized via a property called special soundness. A transcript of the protocol is the
sequence of messages exchanged, i.e., the tuple (Ecom, ϕchl, ϕrsp); it is accepting if the cor-
responding verification succeeds. We say that the above protocol has special soundness
if, given two accepting transcripts (Ecom, ϕchl, ϕrsp) and (Ecom, ϕ

′
chl, ϕ

′
rsp) with the same

commitment Ecom but distinct challenges ϕchl 6= ϕ′chl, one can find a non-scalar endomor-
phism of E. The motivation for this definition is the following. If a prover can successfully
respond to the challenge with good probability, then they can respond to at least two dis-
tinct challenges (for a fixed commitment). If they can respond to two distinct challenges
for one fixed commitment, then the prover is capable of producing two accepting tran-
scripts (Ecom, ϕchl, ϕrsp) and (Ecom, ϕ

′
chl, ϕ

′
rsp) with ϕchl 6= ϕ′chl. With special soundness,

this implies that the prover is capable of finding a non-scalar endomorphism of E.
In other words, if the protocol has special soundness, then a good prover (one who can

successfully respond with good probability) necessarily knows a non-scalar endomorphism
of E. Only one non-scalar endomorphism, and not the full ring sk = End(E)? Yes, but
one is sufficient: as proved in Section 1.4, finding one non-scalar endomorphism is as hard
as finding them all.

Proposition 1.34. The SQIsign identification protocol has special soundness.

Sketch of the proof. Suppose we have two accepting protocol transcripts (Ecom, ϕchl, ϕrsp)
and (Ecom, ϕ

′
chl, ϕ

′
rsp) with distinct challenges ϕchl 6= ϕ′chl. Then, by construction, α =

ϕ̂′chl ◦ ϕ′rsp ◦ ϕ̂rsp ◦ ϕchl is in End(E). It remains to prove that it is not a scalar. By
contradiction, suppose α = [λ] for some λ ∈ Z. We deduce

ϕ̂′rsp ◦ ϕ′chl ◦ [λ] = [deg(ϕ′chl)deg(ϕ′rsp)] ◦ ϕ̂rsp ◦ ϕchl.

Since both ϕ̂′rsp ◦ ϕ′chl and ϕ̂rsp ◦ ϕchl have cyclic kernel (thanks to the “fix” against the
cheating prover!), we deduce that λ = deg(ϕ′chl)deg(ϕ′rsp) (the largest integer dividing
the left- and right-hand side respectively), hence ϕ̂′rsp ◦ ϕ′chl = ϕ̂rsp ◦ ϕchl. As deg(ϕchl) =
deg(ϕ′chl) = 2n, we get

ker(ϕchl) = ker(ϕ̂rsp ◦ ϕchl)[2
n] = ker(ϕ̂′rsp ◦ ϕ′chl)[2

n] = ker(ϕ′chl).

This contradicts the fact that ϕchl and ϕ′chl are distinct non-backtracking paths. �

1.6.3. The response. The response phase can be summarized as follows: knowing both
End(Echl) and End(Ecom), the prover can compute in polynomial time an isogeny ϕrsp :
Ecom → Echl. The prover sends this “response isogeny” ϕrsp to the verifier.

Implementing this idea in a secure way is not as straightforward as this summary sug-
gests. The tricky part is that the response ϕrsp (and the way it is encoded) should not
leak any non-trivial information about the secret. A naive application of the reduction
from `-IsogenyPath to EndRing (via MaxOrder) following Section 1.3.4 will result
in a solution ϕrsp : Ecom → Echl which “passes through” the special curve E0: it factors
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as ϕrsp = ϕ2 ◦ ϕ1 with ϕ1 : Ecom → E0 and ϕ2 : E0 → Echl. From such a response ϕrsp, a
curious verifier can extract the factor ϕ2 : E0 → Echl, and since the endomorphism ring of
E0 is publicly known, they can recover End(Echl). From End(Echl) and ϕchl : E → Echl,
they can recover the secret key End(E).

One needs a better way to generate a response, one which would not leak the secret.
In formal terms, we want the protocol to have the zero-knowledge property. SQIsign
[[DKL+20]] and SQIsignHD [[DLRW24]] propose two distinct ways to select and represent the
response. The set of possible responses is the space

Hom(Ecom, Echl)

of isogenies from Ecom to Echl (and the zero map). It is a lattice of rank 4, with a Euclidean
structure induced by the positive definite integral quadratic form deg : Hom(Ecom, Echl)→
Z. The methods discussed in Section 1.3 show that given End(Echl) and End(Ecom), one
can find an isogeny Ecom → Echl; from there, one can deduce not just one isogeny, but a
complete basis of Hom(Ecom, Echl).

The original SQIsign. SQIsign [[DKL+20]] selects the response as follows:
(1) Fix a large enough power of two 2n, and solve the norm equation deg(ϕ) = 2n

for ϕ ∈ Hom(Ecom, Echl) (in other words, find a lattice point of prescribed norm).
We show in SQIsign [[DKL+20]] that this can be done in polynomial time by a
variant of [KLPT14], without “passing through” the special curve E0.

(2) The solution ϕ is initially represented as a formal linear combination of the basis
of Hom(Ecom, Echl). This representation cannot be revealed: it would leak the
basis, which would leak the secret. Instead, it is converted to a 2-isogeny path of
length n. This path is the response.

There are two issues with this approach. The first is efficiency. For Step 1, one needs 2n

of the order of p3.5, and converting such a large isogeny into a 2-isogeny path is costly.
After algorithmic improvements and low-level optimizations, we showed in [[DLLW23]] that
signatures can be computed in the order of 400ms (for the NIST-I security level, which is
roughly 128 bits of classical security). While not absurdly slow, it is orders of magnitudes
slower than other post-quantum signature schemes (for instance, from the family of lattice-
based cryptography).

The second issue concerns the security proof. It is difficult to argue that this response
is zero-knowledge, that it does not leak any information about the secret. The reason is
that the distribution of the solution ϕ of the norm equation is rather mysterious. While we
can check that ϕ does not “pass through” a special curve E0, there is no formal guarantee
that this carefully crafted ϕ is totally innocuous. To prove the zero-knowledge property
in [[DKL+20]], we resort to a heuristic assumption about the norm equation solver. This
situation is unsatisfactory.

On the bright side, public keys and signatures are very compact. For the NIST-I
security level, public keys are 64 bytes, and signatures are 205 bytes. In particular, the
signature and public key sizes combined are an order of magnitude smaller than all other
post-quantum signature schemes (they are 5.8 times smaller than the lattice-based scheme
Falcon [PFH+17]).

SQIsignHD. SQIsignHD [[DLRW24]] resolves both drawbacks, bringing down the signing
time to the order of 30ms, and enabling a much cleaner security proof. The signatures
are even more compact, at a record-breaking 109 bytes for the NIST-I security level. This
leap forward was enabled by the algorithmic breakthrough underlying the attack on SIDH.
As discussed in Section 1.5.2, the attack provides a new way to represent an isogeny ϕ:
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the interpolation representation (deg(ϕ), P1, P2, ϕ(P1), ϕ(P2)), where (P1, P2) is a basis of
a sufficiently large torsion subgroup. This representation applies to arbitrary isogenies,
unlike the very constrained `-isogeny path representation.

SQIsignHD selects the response as follows:
(1) Fix a bound r > 0, and sample a uniformly random ϕ ∈ Hom(Ecom, Echl)∩B(r),

where B(r) = {ϕ | deg(ϕ) < r2} is the ball of radius r (with respect to the
quadratic form deg).

(2) The solution ϕ is initially represented as a formal linear combination of the basis
of Hom(Ecom, Echl). Consider a basis (P1, P2) of E[2n] for n sufficiently large,
and represent the response isogeny ϕ as (deg(ϕ), P1, P2, ϕ(P1), ϕ(P2)).

In contrast with the mysterious distribution of ϕ in the original SQIsign, the uniform
distribution ϕ ∈ Hom(Ecom, Echl) ∩ B(r) is well-understood, making it much easier to
prove that this response does not leak any information about the secret.

SQIsignHD comes at a cost: the verifier has to check that the tuple
(deg(ϕ), P1, P2, ϕ(P1), ϕ(P2))

indeed represents an isogeny Ecom → Echl. To do so, they need to evaluate it with
the interpolation algorithm, Theorem 1.29. This requires the computation of an isogeny
between abelian varieties of dimension 2, 4 or 8. When 2n − d is a perfect square, a
2-dimensional isogeny is sufficient. When 2n − d is a sum of two squares, one can use a
4-dimensional isogeny. In all other cases, one needs an 8-dimensional isogeny.

In [[DLRW24]], we propose two constructions:
• SQIsign8D: this version benefits from a fully rigorous security analysis, but re-

quires the computation of an isogeny in dimension 8. This has not been imple-
mented, and is likely to be impractical.
• SQIsign4D: this version benefits from essentially the same security proof, but

requires heuristic assumptions. These heuristics account for the fact that 2n − d
is restricted to sums of two squares. The computation of a 4-dimensional isogeny
is more practical, but no optimized implementation is available yet.

In the recent preprint [[BDD+24]], we successfully devise a variant in dimension 2, which
cumulates the advantages of all other variants. It benefits from a heuristic-free security
proof, and boasts a verification time of the order of 4.5ms, and a signing time of the order
of 80ms (even 50ms for a heuristic variant) on a 2GHz processor Intel Xeon Gold 6338
(Ice Lake). There is today significant activity around SQIsign, and improvements are
arriving fast [SEMR23, RK24, JMKR23]. What could have been considered a prohibitively
slow construction a few years ago is becoming increasingly competitive. It is currently
submitted to the call for standardization of post-quantum digital signature schemes by
the American National Institute of Standards and Technology (NIST).





2
Oriented elliptic curves

In this chapter, we present contributions that relate to oriented elliptic curves and their
applications in cryptography. Orientations bring the methods of complex multiplication
to supersingular elliptic curves. In particular, they induce an action of class groups on
supersingular curves. The presumed hardness of inverting this action is the foundation of
the “group action” branch of isogeny-based cryptography. We explore the connection of
this branch with the rest of isogeny-based cryptography, showing that it is also supported
by the hardness of computing endomorphisms. We study the fastest algorithms for the
underlying problems, and build collections of orientations with useful properties.

This chapter is built around the presentation of the articles (in order of appearance):

[[Wes22a]]

Benjamin Wesolowski. Orientations and the supersingular endomorphism
ring problem. In Orr Dunkelman and Stefan Dziembowski, editors, Ad-
vances in Cryptology – EUROCRYPT 2022, volume 13277 of Lecture Notes
in Computer Science, pages 345–371. Springer, 2022.

[[HW23]]
Arthur Herlédan Le Merdy and Benjamin Wesolowski. The supersingular
endomorphism ring problem given one endomorphism. Cryptology ePrint
Archive, Paper 2023/1448, 2023. https://eprint.iacr.org/2023/1448.

[[DFK+23]]

Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling
the CSI-FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
Public-Key Cryptography – PKC 2023, volume 13940 of Lecture Notes in
Computer Science, pages 345–375. Springer, 2023.

2.1. Introduction

The Diffie–Hellman key exchange is among the most emblematic protocols of modern
cryptography. Introduced in 1974 [DH76], this paradigm-defining protocol allows two par-
ties, Alice and Bob, to establish a shared secret (a key) over an insecure communication
channel. It is remarkably simple. Alice and Bob first agree on a cyclic group G (written
multiplicatively) and a generator g of this group. Alice secretly chooses a random integer
a, and sends the group element ga to Bob via the public communication channel. On his
side, Bob also chooses a random integer b, and sends gb to Alice. Both of them are now

https://eprint.iacr.org/2023/1448
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able to compute the value
(ga)b = (gb)a,

a shared secret, to be used as a key to encrypt subsequent communications. An outsider
eavesdropping on the communication channel knows g, ga and gb. Recovering the shared
value gab from this information should be infeasible, and is known as the computational
Diffie-Hellman problem. This problem, and the security of the protocol, is closely tied to
the presumed hardness of the discrete logarithm problem in the group G: given ga, recover
a. Diffie and Hellman suggested to choose for group G the multiplicative group F×q of a
finite field. A more modern choice for G is the group of rational points E(Fq) of an elliptic
curve over a finite field, in which the discrete logarithm problem seems to be as hard as it
gets. Not only the Diffie–Hellman key exchange has remained to this day one of the most
commonly used cryptographic protocols securing the Internet, it has sparked a long series
of cryptosystems whose security relies on the hardness of computing discrete logarithms.

Shor’s quantum algorithm [Sho97] is capable of solving the discrete logarithm problem
in polynomial time in any group, rendering the Diffie–Hellman protocol and its lineage
obsolete in a post-quantum world. Yet, it can be rescued, by replacing the group expo-
nentiation (a, g) 7→ ga with some other group action. A group action of a group G (with
neutral element e) on a set X is a map

? : G×X −→ X : (g, x) 7−→ g ? x

such that for any x ∈ X and g, h ∈ G, we have
• Compatibility: g ? (h ? x) = (gh) ? x, and
• Identity: e ? x = x.

We say that the action is effective if the group operations and group action can be com-
puted efficiently (as well as other natural tasks, like sampling random group elements).
Such group actions are a powerful tool to build cryptographic schemes. For instance, when
G is abelian, we can immediately generalize the Diffie–Hellman key exchange:

(1) Alice and Bob agree on an effective group action, and on a “reference point”
x0 ∈ X.

(2) Alice samples a random secret element gA ∈ G, and sends xA = gA ? x0 ∈ X to
Bob.

(3) Similarly, Bob samples a secret gB ∈ G, and sends xB = gB ? x0 ∈ X to Alice.
(4) Alice can compute xAB = gA ? xB, and Bob can compute xBA = gB ? xA.

The compatibility property and the commutativity of the group imply that xAB = xBA;
it is Alice’s and Bob’s shared secret. An eavesdropper can intercept x0, xA = gA ? x0 and
xB = gB ? x0. A cryptographic group action is one for which recovering the shared secret
from the intercepted data is hard. In particular, it must be hard to “invert” the group
action: given x, y ∈ X, compute g such that y = g ? x, when it exists. This problem is
known as the group action inversion problem, or the vectorisation problem.

The Diffie-Hellman protocol is a particular case of the above protocol, where the action
is given by exponentiation in a finite cyclic group. Given a finite abelian group G of order
N , we have an effective action

(Z/NZ)× ×G 7−→ G : (n, g) 7−→ gn.

The corresponding vectorisation problem is the discrete logarithm problem: given g and
gn, compute n. But while Shor’s algorithm can solve the discrete logarithm problem, no
polynomial time (quantum) algorithm is known for the vectorisation problem is general.
An effective group action which is “hard to invert” even for quantum algorithms would
lead to a post-quantum Diffie–Hellman, and may bring to the post-quantum world many
“discrete logarithm”-based cryptosystems.
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Complex multiplication. Couveignes proposed in 1997 [Cou06] to use a group action arising
from the theory of complex multiplication. The endomorphism ring of an elliptic curve E
over C is either Z or an order O in a quadratic number field. In the latter case, we say
that E has complex multiplication by O. A central result of the theory states that the
class group Cl(O) acts (freely and transitively!) on the collection E``C(O) of isomorphism
classes of elliptic curves with complex multiplication by O.

This result reduces to finite fields. An elliptic curve over Fp is ordinary when its
endomorphism ring is an order O in a quadratic number field. Complex multiplication
induces an action

? : Cl(O)× E``p(O) −→ E``p(O),
where E``p(O) is the collection of isomorphism classes of pairs (E, ι) where E is an el-
liptic curve over Fp and ι : O → End(E) is a ring isomorphism. Couveignes conjectured
in [Cou06] that the vectorization problem for this action is hard to invert, and it can be
used in the generalized Diffie–Hellman key exchange.

This idea did not get much attention for a while. First, there was no “post-quantum”
motivation yet. That changed in 2006 when Rostovtsev and Stolbunov independently
rediscovered the idea [RS06], this time with the observation that the corresponding vec-
torization problem seemed hard even for quantum computers. Second, and perhaps more
importantly, computing the action appeared to be very inefficient, making it unsuitable
for any real-world application. Indeed, the best algorithms to compute this action are
very sensitive to the degree of the field over which certain torsion subgroups are defined.
It is very difficult to find ordinary elliptic curves in which the torsion behaves well enough.
That, in turn, changed with the development of CSIDH in 2018 [CLM+18], combining two
observations:

(1) the torsion is much easier to control for supersingular elliptic curves, and
(2) there is a similar group action for supersingular elliptic curves.

The idea is to use supersingular elliptic curves E defined over a prime-order field Fp (rather
than the general case Fp2). Then, the subring Z[π] ⊂ End(E) generated by the Frobenius
endomorphism π is a quadratic order, and we have an action of Cl(Z[π]) like in the ordinary
case.

Orientations. The notion of orientation introduced by Colò and Kohel [CK20] provides a
generalized framework for these group actions, and have since proved to play a ubiquitous
role in isogeny-based cryptography. Given a quadratic order O, and an elliptic curve E,
an O-orientation of E is an embedding

ι : O −→ End(E).

The pair (E, ι) is an O-oriented curve. More precise definitions are provided in Section 2.2.
Orientations generalize complex multiplication by providing an action

? : Cl(O)× E``p(O) −→ E``p(O),
where E``p(O) is the collection of isomorphism classes of (primitively) O-oriented elliptic
curves over Fp.

Remark 2.1. The curves in E``p(O) are either all ordinary (and coincide with the definition
of E``p(O) for ordinary curves given in the previous paragraph), or all supersingular.

The vectorization problem for this group action is the O-Vect problem. Its pre-
sumed hardness for interesting families of orders O is the foundation of many cryptosys-
tems [CLM+18, DG19, CLP23], [[DFK+23]].

2.1.1. Contributions and organisation of the chapter. The chapter is organized as
follows.
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Oriented elliptic curves. We start in Section 2.2 by presenting some background about
oriented elliptic curves. We provide the basic definitions, discuss how to represent and
manipulate them computationally, and how to compute the action of the class group. We
sketch a parallel with the classical theory of ordinary elliptic curves and isogeny volcanoes.

Orientations and the supersingular endomorphism ring problem. The O-Vect problem
can be seen as an isogeny problem (the action of an ideal on an oriented curve corre-
sponds to some kind of isogeny — see Section 2.2). Yet, this vectorization problem looks
substantially different from the computational problems studied in Chapter 1. Does the
endomorphism ring problem still play a foundational role in the “group action” subfamily
of isogeny-based cryptography?

In Section 2.3, we present the positive answer obtained in the article [[Wes22a]]. The
main result, Theorem 2.18, states that the vectorization problem for the action of Cl(O)
is equivalent to the endomorphism ring problem for O-oriented curves. In particular, the
security of the CSIDH cryptosystem [CLM+18] is equivalent to the problem of computing
the endomorphism ring of supersingular curves defined over Fp.

In the same article, we study the closely related problem O-Uber (introduced in the
article [[DDF+21]]), and prove that it is equivalent to a harder variant of the endomorphism
ring problem.

The supersingular endomorphism ring problem given one endomorphism. In Section 2.4,
we discuss the concrete hardness of the problem O-Vect, through the results of the ar-
ticle [[HW23]]. More precisely, the article [[HW23]] considers the following problem: given a
supersingular curve and one of its endomorphisms (non-scalar), find all the other endomor-
phisms. Knowing one endomorphism is essentially the same as knowing an orientation,
so thanks to the equivalences of [[Wes22a]], this “endomorphism ring problem given one
endomorphism” is essentially equivalent to O-Vect. Only “essentially”, because of an
important nuance about the so-called primitivity of orientations. As a first step, we close
this gap by proving in [[HW23]] that any orientation can efficiently be made primitive (The-
orem 2.22).

We then solve O-Vect (hence the endomorphism ring problem given one endomor-
phism). The fastest algorithms formerly required heuristic assumptions, and we prove
that the same running times can be achieved under the Generalized Riemann Hypothesis
(Theorem 2.20).

Knowing the structure of the acting group. Orientations provide a powerful framework
to build cryptographic group actions. The acting group is the class group Cl(O) of a
quadratic order. Computing the structure of a class group (even its order) is a notoriously
difficult task (which we investigate further in Section 3.5.2). Interestingly, one does not
need to know the structure of Cl(O) to compute its action on oriented curves, and run a
Diffie–Hellman-like protocol. Still, the mystery around Cl(O) has proved to be a source
of difficulty [BKV19], and a better understanding of the acting group may unlock more
advanced cryptographic applications.

In Section 2.5, we present the result of the article [[DFK+23]]: how to construct a family
of oriented curves for easy-to-compute class groups Cl(O). We discuss its security, and
how the careful choice of the order O impacts the hardness of the associated vectorization
problem.

2.2. Oriented elliptic curves

Let K be a quadratic number field, and let O be an arbitrary order in K.
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Definition 2.2 (Orientation). A K-orientation on an elliptic curve E is an embedding
ι : K ↪→ End(E) ⊗ Q. It is an O-orientation if ι(O) ⊆ End(E). It is a primitive O-
orientation if ι(O) = ι(K)∩End(E). Such a pair (E, ι) is called a (primitively) O-oriented
elliptic curve, and we say that E is (primitively) O-orientable.

Remark 2.3. If (E, ι) is an O-oriented elliptic curve, we will often consider ι as an embed-
ding of O into End(E) (which naturally extends to an embedding of K into End(E)⊗Q).

If E is ordinary, the endomorphism algebra End(E) ⊗ Q is itself a quadratic num-
ber field, so the curve can only be K-oriented if K ∼= End(E) ⊗ Q, and there are
# Gal(K/Q) = 2 distinct K-orientations. The situation is much richer for supersingu-
lar elliptic curves, since infinitely many quadratic fields embed in infinitely many ways
in the quaternion algebra Bp,∞ ∼= End(E) ⊗ Q. The choice of an orientation (i.e., of a
quadratic subfield of End(E) ⊗ Q) allows one to transpose ideas and theorems from the
classical theory of complex multiplication to the context of supersingular elliptic curves.

Given a K-oriented elliptic curve (E, ι), any isogeny ϕ : E → E′ induces a K-
orientation ϕ∗(ι) on E′ defined as

ϕ∗(ι)(α) = (ϕ ◦ ι(α) ◦ ϕ̂)⊗ 1

deg(ϕ)
.

Definition 2.4 (Oriented isogeny). Given twoK-oriented elliptic curves (E, ι) and (E′, ι′),
an isogeny ϕ : (E, ι)→ (E′, ι′) is K-oriented if ι′ = ϕ∗(ι).

We write E``p(O) for the set of primitively O-oriented elliptic curves over Fp up to
K-oriented isomorphism.

Proposition 2.5 ([Onu21, Proposition 3.2]). The curves in E``p(O) are supersingular if
and only if p does not split completely in K and does not divide the conductor of O.

In this chapter, we only consider the supersingular case: we assume throughout that
p does not split completely in K and does not divide the conductor of O.

Class groups acting on sets of elliptic curves. Fix an oriented curve (E, ι) ∈ E``p(O). An
O-ideal a induces a subgroup

E[a] =
⋂
α∈a

ker(ι(α)),

and a separable isogeny ϕa : E → Ea of kernel E[a] called the a-multiplication. The target
Ea is the a-transform of (E, ι). This construction induces an action of O-ideals on the set
E``p(O), defined by

a ? (E, ι) = (Ea, (ϕa)∗(ι)),

which factors through Cl(O). This action, well understood for ordinary elliptic curves with
complex multiplication, was first studied in the context of oriented supersingular curves
in [CK20] and [Onu21].

Theorem 2.6 ([Onu21]). The action

Cl(O)× E``p(O) −→ E``p(O) : ([a], (E, ι)) 7−→ a ? (E, ι)

is free and has one or two orbits. For any orbit A, and any (E, ι) ∈ E``p(O), either
(E, ι) ∈ A, or both (E, ι) and (E(p), ι(p)) are in A. Here, ι is the orientation ι composed
with the canonical involution, and ι(p) is the orientation induced by the Frobenius isogeny.

Proof. This theorem combines [Onu21, Proposition 3.3] and [Onu21, Theorem 3.4]. The
statement about (E, ι) is from the proof of [Onu21, Proposition 3.3]. �
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Figure 2.1. A (truncated) 3-isogeny volcano. The cycle at the top is
the crater (level 0). The points just below the surface are at level 1, and
points below them are at level 2. The full volcano continues to lower levels,
forming an infinite (3 + 1)-regular graph.

2.2.1. Isogeny volcanoes. If (E, ι) is a primitively O-oriented curve, and ϕ : (E, ι) →
(E′, ι′) is a K-oriented isogeny, the target (E′, ι′) is not necessarily primitively O-oriented.
It could be primitively oriented by another order in K, inducing the following classification
of isogenies.

Definition 2.7. Let ϕ : (E, ι)→ (E′, ι′) be a K-oriented isogeny, and suppose that ι is a
primitive O-orientation, and ι′ a primitive O′-orientation. If deg(ϕ) is prime then one of
the following three possibilities holds:

• the isogeny is horizontal when O = O′,
• the isogeny is ascending when O ( O′ (then, [O′ : O] = deg(ϕ)), and
• the isogeny is descending when O ) O′ (then, [O : O′] = deg(ϕ)).

We say that an isogeny of composite degree is horizontal, ascending or descending if it
factors as prime degree isogenies all of that same type.

This classification of isogenies gives the graph of oriented `-isogenies the structure of
an isogeny volcano, as in the classical case of ordinary curves [FM02]. Let K be a quadratic
number field, and

E``p(K) =
⋃
O⊂K

E``p(O)

be the collection of isomorphism classes of K-oriented curves. Let ` 6= p be a prime
number, and consider the graph with vertex set E``p(K), and with edges representing
oriented `-isogenies between them.

Recall that any order O in K is of the form O = Z + fOK , where OK is the maximal
order, and f = [OK : O] is the conductor of O. This classification organises the graph in
levels: the level of a vertex (E, ι) ∈ E``p(O) is the valuation at ` of the conductor of O.
Ascending isogenies go from level i to level i − 1, horizontal isogenies preserve the level,
and descending isogenies go from level i to level i+ 1. Each connected component of the
graph is called an `-isogeny volcano, due to its particular shape (see Figure 2.1):

• Horizontal isogenies only exist at level 0 (known as the crater). The subgraph
formed by the crater is regular of degree d ≤ 2.
• From any vertex in the crater, there are d horizontal `-isogenies, and ` + 1 − d

descending `-isogenies.
• From any vertex below the crater, there is 1 ascending `-isogeny, and ` descending
`-isogenies.

Remark 2.8. A similar structure arises on the side of quaternions, through the Deuring
correspondence (see Section 1.3.1). Instead of oriented curves, one can consider “oriented
orders” in the quaternion algebra Bp,∞. Let O ⊂ Bp,∞ be a maximal order, and ι :
K → Bp,∞ an embedding. Let O ⊂ K be an order. The pair (O, ι) is a primitively O-
oriented order if ι(O) = O∩ι(K). A left O-ideal I is ascending (respectively horizontal, or
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descending), if OR(I)∩ ι(K) ) ι(O) (respectively OR(I)∩ ι(K) = ι(O), or OR(I)∩ ι(K) (
ι(O)). Ascending, horizontal, or descending ideals correspond to ascending, horizontal,
or descending isogenies through the Deuring correspondence, and we similarly obtain
volcanoes of oriented orders.

2.2.2. Computing the action of the class group. We conclude this section with a
few words on the first computational question raised by the class group action: given a and
(E, ι), compute a ? (E, ι). Any cryptographic application exploiting this action requires
an efficient algorithm for this task — if not for any a, at least for some interesting family
of ideals.

Computationally, an O-orientation ι is encoded as a generator ω of O together with an
efficient representation (Definition 1.3) of the endomorphism ι(ω). An ideal a is encoded
as a pair (α,N) where N = N(a) is the norm and α ∈ a is an element such that a = 〈α,N〉.

2.2.2.1. The classical method. There is a simple algorithm to compute a ? (E, ι) in time
polynomial in the length of the encoding of (E, ι), in log(N(a)) and in the largest prime-
power factor of N(a). It consists in factoring a into a product of prime ideals, and applying
the action of each factor iteratively. For l a prime ideal of norm `, we proceed as follows:

(1) Write l = 〈α, `〉 for some α ∈ O.
(2) Generate a basis (P1, P2) of E[`]; compute Qi = ι(α)(Pi).
(3) Find coefficients a1, a2 ∈ Z not both divisible by ` such that a1Q1 + a2Q2 = 0.
(4) Compute the separable isogeny ϕa : E → Ea with kernel E[l] = 〈a1P1 + a2P2〉.
(5) Return a ? (E, ι) = (Ea, (ϕa)∗(ι)).

Each step can be performed within the claimed running time. A first bottleneck is the
requirement to work with a basis of E[`]: in the worst case, it requires looking for points
in a field extension of degree O(`) — while polynomial time in `, this can be very costly
in practice. One may want to restrict the action to primes ` such that the points in E[`]
are defined over the base field Fp2 or a small extension.

The orientation (ϕa)∗(ι) deserves more attention: it needs to be represented in an effi-
cient way, a way that allows one to evaluate the corresponding endomorphisms (ϕa)∗(ι)(α)
efficiently. For a while, the only polynomial-time method available was to represent it as
a composition, as it is defined:

(ϕa)∗(ι)(α) = (ϕa ◦ ι(α) ◦ ϕ̂a)⊗
1

deg(ϕa)
.

Each factor of the composition can be evaluated efficiently, and the division by deg(ϕa) = `
can be computed in polynomial time in `.

However, this method “degrades” the quality of the representation after iterative appli-
cations. Indeed, after applying k actions of l, the resulting orientation requires a division
by `k — a task that requires exponential time in k in the worst case. Therefore this
classical method only allows one to evaluate the action of ideals a of powersmooth norm
(meaning that all its prime-power factors are bounded). The result has a “degraded”
representation, making each further action costlier to evaluate.

2.2.2.2. The case of CSIDH. The most emblematic orientation in isogeny-based cryptogra-
phy is the orientation by the Frobenius used in CSIDH [CLM+18]. Let SS(Fp) be the set of
supersingular elliptic curves defined over the prime-order field Fp, up to Fp-isomorphism.
For any E ∈ SS(Fp), its Frobenius endomorphism φEp satisfies φEp ◦φEp = [−p]. Therefore,
writing π =

√
−p, any E ∈ SS(Fp) has a Z[π]-orientation given by

ι : Z[π] −→ End(E) : π 7−→ φEp .

Either this orientation is primitive, or its extension to Z[(1 + π)/2] (when Z[π] is not
maximal) is primitive. Reciprocally, one can show that if E is Z[π]-orientable, then it is
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isomorphic to a curve defined over Fp. Hence the set SS(Fp) is essentially the union of
E``p(Z[π]) and possibly E``p(Z[(1 + π)/2]) (when Z[π] is not maximal).

One can apply the algorithm from Section 2.2.2.1 to compute the action of ideals, with
one advantage: there is no need to compute the induced orientation (ϕa)∗(ι), because it is
automatically given by the Frobenius. In particular, there is no “degradation” issue, and
one can apply the action of any smooth ideal (instead of powersmooth).

There is another major advantage: choosing a prime of the form p = 4`1 . . . `n − 1
where the `i are distinct odd primes, for any supersingular elliptic curve E over Fp, we
have E[`i] ⊆ E(Fp2). Furthermore, each `i splits in Z[π]. This means that for any i,
there are two ideals of norm `i, and their action can be computed using arithmetic in Fp2

(even Fp, with finer observations!), as opposed to extensions of degree O(`i) in general.
This good control of the rationality of torsion subgroups is the reason why CSIDH, using
supersingular curves, is considerably more practical than its ordinary predecessors [Cou06,
RS06].

2.2.2.3. Post-SIDH progress. The fall of SIDH (see Section 1.5) came with a powerful new
tool: the isogeny interpolation algorithm (Theorem 1.29). In the article [[HW23]], we exploit
this tool to break the “powersmooth” barrier of the classical action-evaluation algorithm:
we describe an algorithm to compute the action of any smooth ideal in polynomial time.
This is explained in more detail in Section 2.4.1. The last barrier was lifted by Page and
Robert in [PR23], where they describe a polynomial time algorithm to evaluate the action
of any ideal. The practicality of [PR23] is not yet clear, and former methods may remain
the preferred choice in certain contexts.

2.3. Orientations and the supersingular endomorphism ring problem

The action of class groups on oriented supersingular curves can be used to build cryp-
tosystems. Since this action is defined by isogenies, it naturally qualifies as “isogeny-
based cryptography”. Yet, it feels like a substantially different paradigm from the kind of
isogeny-based cryptography explored in Chapter 1.

In the article [[Wes22a]], we prove a strong connection between the endomorphism ring
problem and the problem of inverting the group action. These computational equivalences
further reinforce the foundational status of the endomorphism ring problem: its presumed
hardness also governs the security of the “group action” family of isogeny-based cryptog-
raphy. In particular, the reductions imply that the security of the CSIDH cryptosystem
is equivalent to a version of the endomorphism ring problem. In this section, we present
this bridge between class group problems and endomorphism ring problems, culminating
in Theorem 2.18, the main result of [[Wes22a]].

2.3.1. Class group action problems. Recall the motivation for O-orientations: they
induce a group action, and if this group action is “hard to invert”, then we can build secure
cryptographic protocols. Inverting the group action is formalized as the vectorization
problem. Let us specialize this notion to the context of oriented curves.
Definition 2.9 (O-Vect). Given primitively O-oriented curves (E, ι), (E′, ι′) ∈ E``p(O),
find an O-ideal a such that (E′, ι′) ∼= a ? (E, ι).

Instead of this “pure” vectorization problem, we work in [[Wes22a]] with two variants:
one seemingly weaker, and the other seemingly stronger. One of the conclusions of the
article is that they all are equivalent. The weaker variant, ineffective O-Vect, does not
require the solution to preserve the orientation. The main motivation for this omission is
that per Theorem 2.6, such a solution always exists (even when the action has two orbits).
Problem 2.10 (Ineffective O-Vect). Given (E, ι) and (E′, ι′) in E``p(O), find an O-ideal
a such that E′ ∼= Ea.
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The stronger variant, effective O-Vect, additionally asks to evaluate the action of a
on some arbitrary curve (F, ).
Problem 2.11 (Effective O-Vect). Given (E, ι), (E′, ι′), (F, ) ∈ E``p(O), find an O-
ideal a (or decide that it does not exist) such that (E′, ι′) ∼= a ? (E, ι), and an efficient
representation of ϕa : (F, )→ a ? (F, ).

For an adversary to break the key exchange in Section 2.1, they would need to solve
the effective O-Vect problem. This point used to be critical, since for a long time, no
general polynomial-time algorithm was known to evaluate the action of arbitrary ideals.
In [[Wes22a]], we circumvented the obstacle by proving that both variants are equivalent
to a third problem: computing the endomorphism ring.

Now, one may observe that since the ineffective O-Vect problem does not require the
solution to preserve the orientation ι′, the problem remains well-defined if we drop ι′ from
the input. This modification seems to make the problem much harder, and this presumed
hardness (for large discriminant) has been introduced in [[DDF+21]] as the Uber isogeny
assumption.
Problem 2.12 (Ineffective O-Uber). Given (E, ι) ∈ E``p(O) and a primitively O-
orientable curve E′, find an O-ideal a such that E′ ∼= Ea.

We similarly have an effective variant.
Problem 2.13 (Effective O-Uber). Given (E, ι), (F, ) ∈ E``p(O) and a primitively O-
orientable curve E′, find an O-ideal a (or decide that it does not exist) such that E′ ∼= Ea,
and an efficient representation of ϕa : (F, )→ a ? (F, ).

Ineffective O-Vect immediately reduces to ineffective O-Uber. The results from
[[Wes22a]] clarify the hardness gap between these problems.

2.3.2. Oriented endomorphism ring problems. In the article [[Wes22a]], we intro-
duced three oriented variants of the endomorphism ring problem. The first is simply the
endomorphism ring problem when the input is an oriented curve.
Problem 2.14 (O-EndRing). Given (E, ι) ∈ E``p(O), compute End(E).
Remark 2.15. In light of the results of [[Wes21]] presented in Section 1.3, when we say
“compute End(E)”, we mean both finding a basis of End(E) and an explicit isomorphism
with a quaternionic order (i.e., solving both EndRing and MaxOrder simultaneously).

The O-EndRing problem is a priori easier than EndRing, as the orientation readily
provides some information about the endomorphism ring. The second variant is the same
problem but without being provided the orientation.
Problem 2.16 (EndRing|O). Given a primitivelyO-orientable curve E, compute End(E).

Finally, we consider the seemingly harder problem of computing the endomorphism
ring and an orientation.
Problem 2.17 (O-EndRing∗). Given a primitivelyO-orientable curve E, compute End(E)
and a primitive orientation ι : O → End(E).

Clearly O-EndRing reduces to EndRing|O, which in turn reduces to O-EndRing∗.
There seems to be a significant gap between O-EndRing and EndRing|O — except
in the special case where the orientation is provided by the Frobenius, like in CSIDH.
However, the distinction between EndRing|O and O-EndRing∗ is not clear. We prove
in [[Wes22a, Corollary 1]] that they are equivalent when disc(O) = O(p1/2). We later
improved that bound to O(p) in [[CHVW22]], and Eriksen and Leroux improved it further to
O(p4/3) in [EL24].
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2.3.3. Two classes of problems. The main contribution of [[Wes22a]] is the identification
of two classes of equivalent problems.

Theorem 2.18 ([[Wes22a]]). Assume the Generalized Riemann Hypothesis. If the factor-
ization of disc(O) is known, then

(1) O-EndRing and (effective or ineffective) O-Vect are equivalent, and
(2) O-EndRing∗ and (effective or ineffective) O-Uber are equivalent,

under probabilistic polynomial time reductions in the size of the instances and in # Cl(O)[2].

The dependency in # Cl(O)[2] only appears in the “vectorization to endomorphism
ring” direction. Note that in all cases that are currently of interest, the discriminant of
O is essentially one large prime (or prime power). Then, # Cl(O)[2] = O(1) causes no
trouble, and the factorization of disc(O) comes for free.

Previous work. The first article to investigate the relation between EndRing and the
vectorisation problem was [CPV20], in the particular case of curves defined over Fp (with√
−p ∈ O, the orientation used in the CSIDH cryptosystem). They prove that knowledge

of the endomorphism ring of a CSIDH public key allows one to recover the ideal class of the
secret key. This surprising result, however, only implied a subexponential reduction from
breaking CSIDH to computing endomorphism rings. In essence, they prove a reduction
from the ineffective vectorisation problem, but not from its effective variant — at a time
where the distinction was critical. In [[Wes22a]], we circumvent this issue, proving the
first polynomial time reduction from the effective vectorisation problem (hence breaking
CSIDH) to the endomorphism ring problem.

Subsequent work. The above theorems have been improved since [[Wes22a]]. In the arti-
cle [[CHVW22]], we develop new techniques for the “decisional O-DiffieHellman problem”,
and as an application, we reduce the dependency in # Cl(O)[2] to a subexponential quan-
tity. For the reduction from O-Vect to O-EndRing, the article [EL24] has since entirely
removed the dependency in # Cl(O)[2], as well as the need for the factorization of the
discriminant and the Generalized Riemann Hypothesis.

2.3.4. Finding a reference oriented elliptic curve. Recall that in Section 1.3, to
prove the equivalence between EndRing and `-IsogenyPath, the first ingredient was
to build a “reference” curve E0, a special curve with known endomorphism ring. Such a
reference curve is equally important in proving the equivalence between O-EndRing and
O-Vect. But now, the reference curve must be primitively O-oriented.

In [[Wes22a]], we present a general algorithm to generate such a curve in E``p(O) in
polynomial time. This already requires knowledge of the factorization of disc(O).

Theorem 2.19 ([[Wes22a, Lemma 4]]). Assume the Generalized Riemann Hypothesis.
There is an algorithm which, given a prime p, a quadratic order O, and the factorization
of disc(O), returns (or asserts that it does not exist) a primitively oriented curve (E0, ι0) ∈
E``p(O) together with a basis of its endomorphism ring End(E0), and runs in polynomial
time in log p and log(|disc(O)|).

Sketch of the proof. The algorithm consists in first solving the quaternion analog of the
problem (find a maximal order O ⊂ Bp,∞ in which O primitively embeds), then solve the
“reverse Deuring correspondence” (find an elliptic curve with endomorphism ring isomor-
phic to O). The second step uses techniques discussed in Section 1.3.

Let us say a bit more about the first step. Embedding O into Bp,∞, then extending the
quadratic order to a maximal quaternionic order O, can be done in a rather straightforward
manner, by solving quadratic equations. However, the resulting embedding O → O is not
necessarily primitive. Instead, we consider OK the maximal order in K = O⊗Q, and find
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an embedding OK → Õ to some maximal order Õ in Bp,∞. This embedding is necessarily
primitive, since OK is maximal. To find a primitive embedding O → O, we carefully work
our way down the “volcano of oriented orders” (see Remark 2.8). �

2.3.5. O-EndRing reduces to O-Vect. Let us sketch the reduction from O-EndRing
to O-Vect. Suppose we are given an instance (E, ι) ∈ E``p(O) of the O-EndRing
problem, and we have an oracle solving the O-Vect problem. Find (E0, ι0) ∈ E``p(O)
together with a basis of its endomorphism ring End(E0), as in Theorem 2.19. The oracle
finds an O-ideal a such that E ∼= Ea

0. The isogeny ϕa : E0 → E corresponds to the
ideal Iϕa = End(E0) · ι0(a), and we have OR(Iϕa)

∼= End(E). Knowing the ideal a, the
orientation ι0 and a basis of End(E0), we can compute a basis of Iϕa . The right-order
OR(Iϕa) can be computed with [Rón92, Theorem 3.2], thereby solving O-EndRing for
(E, ι).

The equivalence between MaxOrder and EndRing (discussed in Section 1.3.5) plays
a role under the hood, to translate the order OR(Iϕa) (only isomorphic to End(E)) into
the actual endomorphism ring End(E).

2.3.6. O-Vect reduces to O-EndRing. Reducing O-Vect to O-EndRing is more
delicate. Suppose we are given an instance (E, ι), (E′, ι′) ∈ E``p(O) of O-Vect, and
we know the endomorphism rings End(E) and End(E′). Knowing the endomorphism
rings (or equivalently, isomorphic orders in Bp,∞), it is easy to find a “connecting ideal”
between them, corresponding to an isogeny E → E′. However, in general, such an ideal
is not related to an O-ideal a (equivalently, the isogeny E → E′ does not preserve the
orientations). Careful steps which we do not detail here allow one to craft a special
connecting ideal of the form End(E) · ι(a), from which one can recover an O-ideal a.

2.4. The supersingular endomorphism ring problem given one endomorphism

Given a supersingular elliptic curve E and a non-scalar endomorphism α ∈ End(E) \ Z,
how hard is it to find all the other endomorphisms of E? This question naturally emerges
in the context of oriented curves, as the data of an orientation is essentially the same as
one endomorphism (a generator of the orientation). In the article [[HW23]], we prove the
following theorem.

Theorem 2.20 ([[HW23, Theorem I and II]]). There is an algorithm which, given a super-
singular curve E and an endomorphism α ∈ End(E)\Z, computes the endomorphism ring
of E in

• classical expected time lO(1)|disc(Z[α])|1/4, or
• quantum subexponential time lO(1)L| disc(Z[α])|(1/2),

where l is the length of the input, assuming the Generalized Riemann Hypothesis.

This question closely relates to the hardness of the O-EndRing problem (and there-
with O-Vect, thanks to the equivalence in Theorem 2.18). Indeed, in the O-EndRing
problem, one is given a primitive orientation, hence an endomorphism. Reciprocally, any
endomorphism α induces an orientation of E by the order Z[α]. However, this orientation
is not necessarily primitive, a requirement in O-EndRing. Thanks to this observation, we
prove Theorem 2.20 in three steps. Suppose we are given a curve E and an endomorphism
α ∈ End(E) \ Z.

(1) Primitivization. First, we extend the orientation Z[α] → End(E) to a prim-
itive orientation ι : O → End(E), for some superorder O ⊇ Z[α]. This is
the Primitivization step. The Primitivization problem was first introduced
in [ACL+23], where it was believed to be hard. We show that it can actually be
solved in polynomial time.
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(2) Reduction. Now that we have a primitively O-oriented curve (E, ι), we can apply
the equivalence of Theorem 2.18: to compute End(E), it is sufficient to solve the
O-Vect problem.

(3) Vectorization. Finally, we solve O-Vect. Heuristic algorithms for this step had
already been described, and the contribution of [[HW23]] lies in the design and
analysis of rigorous algorithms, assuming the Generalized Riemann Hypothesis

The reduction step was the object of Section 2.3. We now discuss the algorithms for
Primitivization and O-Vect.

2.4.1. Primitivization. The primitivization problem is the following computational prob-
lem.
Problem 2.21 (Primitivization). Given an O0-oriented elliptic curve (E, ι0), find a
superorder O ⊇ O0 and a primitive orientation ι : O → End(E) such that ι|O0 = ι0.

For supersingular elliptic curves, this problem is first considered in [ACL+23], where
a quantum subexponential-time algorithm is given. In the article [[HW23]], we prove that
given the factorization of disc(O0), the problem can be solved in classical polynomial
expected time. The idea comes from observing that Primitivization is very similar
to the endomorphism ring problem for ordinary elliptic curves, which can be solved in
polynomial time with Robert’s algorithm [Rob22] (up to some factorization).

Indeed, given an ordinary elliptic curve E over the finite field Fq, the q-Frobenius
endomorphism πq generates a quadratic subring Z[πq] ⊆ End(E). The full endomorphism
ring is given by the primitivization of the inclusion Z[πq] → End(E) (recall that in the
ordinary case, the endomorphism ring is a quadratic ring). Adapting Robert’s algorithm,
we get the following theorem.
Theorem 2.22 ([[HW23, Corollary 5.2]]). There is a probabilistic polynomial time algorithm
solving Primitivization, given the factorization of disc(O0).
Sketch of the proof. The input orientation ι0 : O0 → End(E) is given by a generator ω0

of O0, and an efficient representation of its image α0 = ι0(ω0). Without loss of generality,
we can write ω0 = fω where f is the conductor of O0, and ω is a generator of the maximal
order of O0 ⊗Q.

Let ` be a prime factor of f . If α0/` is not an endomorphism, we say that the orien-
tation is locally primitive at `. Otherwise, α0/` is an endomorphism, and the orientation
ι0 : Z[fω]→ End(E) : fω 7→ α0 can be extended to the superorder

Z[(f/`)ω]→ End(E) : (f/`)ω 7→ α0/`.

One can perform this step recursively for all prime factors of the conductor, until the
orientation is locally primitive at each of them. When the orientation is locally primitive
at every prime factor of f , it is a primitive orientation.

A question remains: how to test whether α0/` is an endomorphism (i.e., whether `
divides α0 in End(E)), and if is it, how to find an efficient representation for it? Note
that ` divides α0 if and only if ker([`]) ⊆ ker(α0), so this task is easy when ` is a small
prime number. But dealing with large primes (or even large prime powers) requires more
care. An idea of [Rob22] which we generalize in [[HW23]] consists in using the interpolation
representation (see Section 1.5.2): for any isogeny ϕ : E → E′, powersmooth integer N >
deg(ϕ), and basis (P1, P2) of E[N ], the tuple (deg(ϕ), P1, P2, ϕ(P1), ϕ(P2)) is an efficient
representation of ϕ. Furthermore, for any tuple of the same form (d, P1, P2, Q1, Q2), one
can efficiently verify whether it actually represents an isogeny. Therefore, we can choose an
integer N coprime to `, and consider a tuple (deg(α0), P1, P2, α0(P1), α0(P2)) representing
α0. Then, α0/` is an endomorphism if and only if it is represented by

(deg(α0)/`
2, P1, P2, [`

−1 mod N ]α0(P1), [`
−1 mod N ]α0(P2)).
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One can efficiently verify whether that tuple actually represents an isogeny, and when it
does, it readily provides an efficient representation of α0/`. �

2.4.1.1. A first consequence: computing the action of smooth ideals. Recall that the clas-
sical algorithm to evaluate the action a ? (E, ι) runs in polynomial time in the largest
prime-power factor of N(a). Therefore, to be efficient, it requires a to be powersmooth.
The reason is that the induced isogeny

ϕ∗(ι)(α) = (ϕ ◦ ι(α) ◦ ϕ̂)⊗ 1

deg(ϕ)
.

is represented in the most straightforward way, as a composition of ϕ, ι(α), ϕ̂, and a
division by deg(ϕ). The dependence in the prime-power factors comes from the division.

One may be tempted to decompose a as a product of powersmooth ideals, and applying
the action of each factor iteratively. However, iterative applications of the classical algo-
rithm increases the denominator, hence “degrades” the quality of the representation of the
orientation. A solution would be, at each step, to clear the denominator: finding another
representation of the orientation. This can be done by representing the orientation with
the interpolation method, like in the Primitivization algorithm. Concretely, to avoid
the division, consider the division-free orientation by the order Z+deg(ϕ)O. Now, instead
of dividing by deg(ϕ), solve Primitivization, which returns a good representation of the
primitive O-orientation ϕ∗(ι). This method allows one to compute the action of a in time
polynomial in the largest prime factor of a, instead of its largest prime-power factor.

2.4.1.2. A second consequence: ascending the volcano. Recall that fixing a quadratic field
K, and a prime `, the graph of K-oriented `-isogenies forms a so-called volcano. A vertex
in the volcano is a primitively O-oriented curve (E, ι) for some order O = Z + `ifOK ,
where gcd(f, `) = 1, and i is the level of the vertex in the volcano.

An ascending isogeny from (E, ι) reaches a curve (E′, ι′) primitively oriented by O′ =
Z + `i−1fOK . The conductor decreases by a factor `. In particular, the discriminant
decreases, so the size of the class group decreases, and the corresponding vectorization
problem gets simpler. This motivates the problem of ascending the volcano: given an
instance of, say, O-EndRing, one could first try to ascend to the level of O′-oriented
curves for an order O′ of smallest possible discriminant, where the problem is easier (then
“transport the endomorphism information” back down through the vertical isogenies).

Previously, ascending walks in the volcano were limited to small powers of small primes,
because of the degradation induced by division of endomorphisms. We proved in [[Wes22a,
Theorem 5]] that (Z + cO)-EndRing reduces to O-EndRing in polynomial time in the
largest prime-power factor of c. Thanks to the new division method, we obtain the fol-
lowing theorem, unlocking large powers of small primes.

Theorem 2.23 ([[HW23, Theorem 7.11]]). Let c be a positive integer, and O a quadratic
order. The (Z+cO)-EndRing problem reduces to O-EndRing in probabilistic polynomial
time in the length of the input, and in the largest prime factor of c.

2.4.2. Vectorization. The resolution of O-Vect is the heart of Theorem 2.20, domi-
nating the running times.

Classical algorithm. The case of ordinary elliptic curves (and its natural generalization to
CSIDH) has been studied as early as [GHS02], and the development of theoretical tools
such as [JMV09] unlocked a rigorous analysis of these algorithms. We now present the
solution for general orientations, which combines these “ordinary” methods with the new
technique for the evaluation of the action of smooth ideals (Section 2.4.1.1).
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The fastest known classical algorithm for the O-Vect problem is a meet-in-the-middle
algorithm. We are given two O-oriented elliptic curves (E, ι) and (E′, ι′) (we suppose they
are in the same orbit). Note that the orbit has size # Cl(O) ≈ | disc(Z[α])|1/2.

(1) First, generate random ideals ai until the list T = (ai ? (E, ι))i contains about
|disc(Z[α])|1/4 distinct isomorphism classes.

(2) Second, generate random ideals b until b ? (E′, ι′) is an entry in the list T , say
b ? (E′, ι′) = ai ? (E, ι). Return the ideal class [b]−1[ai].

If one can sample ideals a uniformly distributed in the class group, the corresponding
curves a?(E, ι) are uniformly distributed in the orbit. Using such a procedure, each of the
above steps requires approximately |disc(Z[α])|1/4 samples, leading to the claimed running
time.

The main difficulty thus resides in sampling uniformly random classes [a] in a way that
the action a ? (E, ι) can be computed efficiently. This is where random walks come in.

We define random walks in E``p(O) as follows. Consider a collection S of ideals in O.
An S-step from a starting point (E, ι) ∈ E``p(O) consists in sampling a ∈ S uniformly
at random, and going to a ? (E, ι). An S-walk of length k is a sequence of k consecutive
S-steps. A classical choice for S is the set S = PB of all prime ideals of norm at most
some bound B. It is well-known that PB-walks have rapid-mixing properties.

Theorem 2.24 ([JMV09], adapted to the context of oriented curves). Let ε > 0. Assuming
the Generalized Riemann Hypothesis, there are bounds

B = O((log |disc(O)|)3), and
κ = log(|disc(O)|) · poly(log log(|disc(O)|), log(1/ε))

such that for any k ≥ κ, the endpoint of a PB-walk in E``p(O) of length k is at total
variation distance at most ε from the uniform distribution in the orbit of the starting point.

A PB-walk corresponds to the action of a B-smooth ideal. Smooth, but not pow-
ersmooth. This was not an issue in the classical case of ordinary elliptic curves. For the
general case, it motivated the development of the algorithm described in Section 2.4.1.1
for the action of smooth ideals. The equidistribution property of random walks, together
with the efficient algorithm to compute them, results in a rigorous meet-in-the-middle
algorithm for the O-Vect problem, assuming the Generalized Riemann Hypothesis.

Quantum algorithm. The subexponential quantum resolution of the O-Vect proven in
[[HW23]] is based on the work of Childs, Jao and Soukharev [CJS14] to construct an isogeny
between two given isogenous ordinary elliptic curves. In particular, we use the fact that
given two oriented elliptic curves (E0, ι0), (E1, ι1) ∈ E``p(O) in the same orbit, finding an
O-ideal a such that a ? (E0, ι0) = (E1, ι1) can be viewed as an instance of the hidden shift
problem.

Problem 2.25 (HiddenShift). Given a finite abelian group (A,+), a finite set S ⊂
{0, 1}m, and two black-box functions f0, f1 : A → S where f0 is injective and such that
there exists an element s ∈ S verifying f1(x) = f0(s+ x) for any x ∈ S, find the element
s called the shift hidden by f0 and f1.

Defining f0, f1 : Cl(O)→ E``p(O) as

f0([a]) = a ? (E, ι), and
f1([a]) = a ? (E′, ι′),

one can use Kuperberg’s quantum algorithm to solve the HiddenShift problem (hence
O-Vect) in a subexponential number of queries to f0 and f1.
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Theorem 2.26 (Theorem 7.1. [Kup05]). There is a quantum algorithm for HiddenShift
over abelian groups with time and query complexity 2O(

√
logn), where n is the size of the

abelian group.

The complexity of evaluating the functions fi (a “query”) presents a challenge: it re-
quires evaluating the action of arbitrary ideals. We can generalize the strategy of [CJS14]:
find a smooth representative of the class [a], then apply the action of that representa-
tive with the method of Section 2.4.1.1. A subexponential smoothness bound leads to a
subexponential complexity. Today, the algorithm of [PR23] enables a more straightforward
approach, since it can evaluate the action of any ideal in polynomial time.

2.5. Knowing the structure of the acting group

Orientations provide a powerful framework to obtain a cryptographic group action. The
orientation provided by the Frobenius on supersingular curves over Fp is the most promi-
nent incarnation of this framework, and the heart of the CSIDH key exchange (see Sec-
tion 2.2.2.2).

One downside of this framework is that the structure of the acting group Cl(O) is,
in general, hard to compute. “Computing the structure” means computing a complete
set of generators and relations, but even computing the order of the group is a difficult
task in general. The best known algorithm is the index-calculus algorithm [HM89], running
in subexponential expected time L| disc(O)|(1/2). For security, the discriminant must be
chosen large enough for the cost of solving O-Vect to be prohibitively high; the fastest
known quantum algorithm itself has complexity about L| disc(O)|(1/2) (Theorem 2.20).
Therefore, at first glance, it looks like (quantumly) breaking the security has about the
same cost as computing the structure Cl(O). In other words, it seems hard to have the
two following properties simultaneously:

• the O-Vect problem is hard (even for a quantum computer), and
• the structure of Cl(O) is known.

This account of the situation is, of course, not fully accurate. The hidden constants in
both L| disc(O)|(1/2) complexities are not the same, and it appears that computing the class
group is substantially faster than the quantum algorithm for vectorization (and, of course,
has the advantage of not requiring a quantum computer). The CSI-FiSh scheme [BKV19]
demonstrated that fact: they computed the structure of the class group for the first
security level of CSIDH (namely CSIDH-512, where |disc(O)| is a 512-bit integer). The
computation took an estimated effort of 52 core years. Applying this approach to higher
security levels is believed to be infeasible.

2.5.1. SCALLOP. In [[DFK+23]] we explore another route and introduce SCALLOP, a
scalable framework for the action of class groups with known structure. We observe that
the case of CSIDH is quite unfavorable: the corresponding order O = Z[π] = Z[

√
−p] is

a maximal order (or of index 2 in a maximal order). For such orders, the index-calculus
algorithm is the best we can do, and we are stuck with the complexity L| disc(O)|(1/2). The
class group of non-maximal orders can be easier to compute; and in interesting cases, the
corresponding vectorization problem remains hard. In SCALLOP, we consider the class
group of a quadratic order of large prime conductor inside an imaginary quadratic field of
small discriminant. This family of quadratic orders lets us easily determine the size of the
class group, and, by carefully choosing the conductor, even exercise significant control on
it. We analyse the security of this construction, and show how to efficiently represent the
corresponding orientations.

One of the motivations was to be able to evaluate the action of arbitrary ideals — at a
time where no polynomial-time algorithm was known. SCALLOP was the first to achieve
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that goal for a security level equivalent to CSIDH-1024, a parameter firmly out of reach
of the index-calculus approach of CSI-FiSh. Asymptotically, the evaluation algorithm
described in SCALLOP is still subexponential. Today, that motivation is challenged by
the polynomial time algorithm of Clapotis [PR23] to evaluate the action of arbitrary ideals
(Clapotis is asymptotically more efficient, but its practicality is still under investigation).
Still, the approach of SCALLOP remains the only framework in which the structure of the
acting group can be computed in polynomial time. It even unlocks an action for which the
discrete logarithm problem on the acting group is easy (it would be easy for a quantum
adversary anyway, but this power can now be given to the good guys, for constructive
applications).

2.5.2. Class groups of non-maximal orders. As mentioned in the previous section,
non-maximal orders can have easy-to-compute class groups. For the moment, assume that
the size of the class group Cl(O) is an accurate metric for the hardness of O-Vect. We
simply wish to find large class groups whose structure can be computed efficiently.

Consider an imaginary quadratic number field K, with maximal order OK . Recall
that any order in K is of the form O = Z + fOK , where f ∈ Z>0 is the conductor. We
start from two observations:

(1) The class group Cl(O) is a well-understood combination of Cl(OK) and other
simpler groups.

(2) The size of the class group Cl(O) grows linearly with the conductor f .
Therefore, it is possible to construct large class groups Cl(O) as follows: consider a field of
small discriminant (so the class group Cl(OK) is easy to compute), and let O = Z+ fOK

be an order with large conductor f . The structure of Cl(O) can be deduced from Cl(OK)
thanks to the classical exact sequence

1→ O×K/O× → (OK/fOK)×/(O/fOK)× → Cl(O)→ Cl(OK)→ 1.

Let us look at each group in that sequence. The group O×K/O× is the simplest. Indeed,
for all but two imaginary quadratic number fields, we have O×K = {±1}, hence O×K/O×
is trivial. The two exceptions are the Gaussian integers and the Eisenstein integers, for
which O×K/O× has order at most 3.

To compute the group Cl(OK), we choose a field K of small discriminant. In SCAL-
LOP, we push this choice to the extreme, choosing a field for which Cl(OK) is trivial, like
Q(
√
−1).

To obtain the structure of Cl(O), it remains to compute (OK/fOK)×/(O/fOK)×.
It can be computed efficiently from the factorization of f . For SCALLOP, we only care
about the case where f is a large (hence unramified) prime number — for security reasons,
see Section 2.5.3. When f is an unramified prime, there is an explicit isomorphism

(OK/fOK)×/(O/fOK)× ∼=

{
F×f if f splits in K, or
F×
f2/F×f if f is inert in K.

Example 2.27. Let K = Q(
√
−1) and OK = Z[

√
−1]. Then, O×K/O× has order 2, and

Cl(OK) is trivial. Let f be a prime number such that f ≡ 1 mod 4, and let O = Z+fOK .
Then, ` is inert in K, hence (OK/fOK)×/(O/fOK)× ∼= F×f . Through this isomorphism,
the group O×K/O× maps to {±1} (the only subgroup or order 2). We deduce that

Cl(O) ∼= F×f /{±1} ∼= Z/
(
f − 1

2

)
Z.

This is it: we have an order O with arbitrarily large class group Cl(O), and an explicit
description of the “structure” of Cl(O). It is cyclic of order (f − 1)/2. Now, one could
ask for more, like being able to compute discrete logarithms in Cl(O). In general, solving
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discrete logarithms in F×f cannot be done in polynomial time. But if it has smooth order, it
is easy. One could craft the prime conductor f such that f−1 is smooth (say, f = 2n+1).

Once a suitable order O has been found, it remains to find an initial O-oriented curve
(E, ι) ∈ E``p(O). This can be done in polynomial time via Theorem 2.19. A large part
of the article [[DFK+23]] is concerned with making these theoretical algorithms as practi-
cal as possible. These considerations have since largely been surpassed, for instance by
SCALLOP-HD [CLP23]. Leveraging the isogeny interpolation algorithm (Theorem 1.29),
this “HD” version is both simpler and faster than the original construction.

2.5.3. Security analysis. Does replacing maximal orders (as in CSIDH) with non-
maximal orders (in SCALLOP) jeopardize the security? Theorem 2.23 makes one thing
clear: the conductor of the order should not be smooth, otherwise an attacker could
“ascend the volcano”, reducing the security to a case where the discriminant is small.
Precursors of that theorem motivated the choice in SCALLOP for the conductor to be one
large prime f . With this precaution, the fastest known attacks are essentially the meet-
in-the-middle (classical) and Kuperberg (quantum) algorithms, analyzed in Section 2.4.

In [[DFK+23]], we discuss another conceivable attack strategy. Let us focus on the
O-EndRing problem (which is essentially equivalent toO-Vect, thanks to Theorem 2.18).
We are give some (E1, ι1) ∈ E``p(O), and wish to compute End(E1). In SCALLOP, the
order O is of the form Z+ fOK where the maximal order OK has trivial class group. One
can compute the (essentially) unique (E0, ι0) ∈ E``p(OK) together with its endomorphism
ring End(E0). There exists a unique descending isogeny

ϕ : (E0, ι0) −→ (E1, ι1),

which has degree f . To compute End(E1), one could try the following:
(1) Design an algorithm to find an efficient representation of ϕ.
(2) Using this representation, convert ϕ to its corresponding left End(E0)-ideal Iϕ.
(3) Deduce End(E1) as the right-order of Iϕ.

Step 3 can be done with the methods presented in Section 1.3. Step 2 is already more
challenging, but this “isogeny to ideal” problem for large prime degree has recently been
solved in quantum polynomial time [CII+23]. Now, the security of SCALLOP entirely
hangs on Step 1. The isogeny ϕ is uniquely determined by all the information available
to an attacker, but there is no known method to find it, other than solving O-EndRing
in the first place with generic methods.





3
Ideal lattices

In this chapter, we present contributions related to ideal lattices, and their applications
in cryptography and computational number theory. We study random walks in the space
of ideal lattices up to isometry: the Arakelov class group. These random walks are a
powerful tool to study the hardness of computational problems in ideal lattices, and to
design rigorous algorithms for algebraic number theory.

This chapter is built around the presentation of the articles (in order of appearance):

[[BDPW20]]

Koen de Boer, Léo Ducas, Alice Pellet-Mary, and Benjamin Wesolowski.
Random self-reducibility of Ideal-SVP via Arakelov random walks. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy – CRYPTO 2020, volume 12171 of Lecture Notes in Computer Science,
pages 243–273. Springer, 2020.

[[FPSW23]]

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé, and Benjamin
Wesolowski. Ideal-SVP is hard for small-norm uniform prime ideals. In
Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography –
21st International Conference, TCC 2023, volume 14372 of Lecture Notes
in Computer Science, pages 63–92. Springer, 2023.

[[BPW24]]
Koen de Boer, Alice Pellet-Mary, and Benjamin Wesolowski. Rigorous
methods for computational number theory. Preprint available on demand,
2024.

Part of the results of [[BPW24]] also appeared in the PhD dissertation of de Boer [Boe22].

3.1. Introduction

A lattice is a discrete subgroup in a Euclidean vector space. A lattice Λ is generally
represented by a basis: a collection (b1, . . . , bm) of linearly independent vectors with Λ =
b1Z + · · · + bmZ. The integer m is the rank of the lattice. As a group, the lattice is
isomorphic to Zm. The Euclidean norm on the ambient space makes for a much richer
playground, inducing a notion of length on the vectors of the lattice. One can then
ask geometric questions (what is the shortest possible length of a non-zero vector in the
lattice?), or their computational counterparts (can one find a non-zero lattice vector with
shortest possible length?).

Lattices have been a standard object in number theory since Minkowski’s seminal work
Geometrie der Zahlen published in 1896. This number-theoretic perspective on lattices
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came to be known as the field of geometry of numbers in reference to this work. Most
famously, Minkowski proved that any lattice contains a vector of relatively short norm
(Minkowski’s bound on the shortest vector). Lattices appear naturally in algebraic num-
ber theory: the ring of integers of a number field is a lattice, and so is any (fractional)
ideal. We call them ideal lattices. Considering ideals as lattices and applying Minkowski’s
bound is a classical approach to prove one of the most fundamental theorems in algebraic
number theory: the finiteness of the class group.

The shortest vector problem (SVP) is the following computational problem: given a
lattice Λ (described by a basis), find a non-zero vector in Λ with shortest norm. The short-
est vector problem (or its approximated version, Approx-SVP) is a central hard problem
in complexity theory. It is presumed to be hard even for quantum algorithms, and thanks
to the worst-case to average-case reductions of Ajtai [Ajt99] and Regev [Reg09], it has
become the theoretical foundation for many post-quantum cryptographic constructions.

The idea is the following: the private key would be a “good” basis of a lattice Λ,
consisting of n short vectors, and the public key would be a “bad” basis of the same
lattice, from which it is hard to recover short vectors. The public basis, while “bad”, still
enables some simple operations: sampling random lattice points (far from the origin), or
encoding a message as a lattice point P ∈ Λ. Adding a small “error” ε to this point (i.e.,
shifting it to obtain a close point outside the lattice), only the secret “good” basis allows to
recover the original point P from the noisy point P +ε. Hence the security of lattice-based
cryptography relies on the presumed hardness of finding short vectors (to recover a short
basis from a bad one), and on closely related problems such as learning with errors (LWE)
and short integer solution (SIS).

The main disadvantage of such plain lattice-based cryptosystems is their heavy memory
and bandwidth footprint: the public and secret keys both are a lattice basis, an n × n
matrix, where the dimension n is in the order of hundreds. This issue can be addressed
by using lattices with more structure. Ideal lattices (or the more general notion of module
lattices) thereby took a central place in lattice-based cryptography. The shortest vector
problem in ideal lattices is the Id-SVP problem. The Ring-SIS [Mic07, LM06, PR06]
and Ring-LWE [SSTX09, LPR13, PRS17] problems were introduced and shown to be at
least as hard as worst-case instances of Id-SVP. Both Ring-SIS and Ring-LWE have
proved very versatile problems for building efficient cryptographic schemes.

The additional algebraic structure, while practically useful to build efficient cryptosys-
tems, also opens more cryptanalytic avenues. How hard is Id-SVP? While still far from
being “solved”, we do know much better algorithms for some versions of Id-SVP than
for the unstructured case [CGS14, CDPR16],[[CDW17, CDW21]]. Id-SVP has proved a fertile
cryptanalytic playground to test the impact of adding “structure” to lattice problems.

This chapter revolves around the development of a new tool and its consequences in
cryptography and in computational number theory: random walks in the space of ideal
lattices. The rapid-equidistribution properties of these random walks bring new insights
on the (average) hardness of computational problems in ideal lattices, and unlock new
algorithms for fundamental problems in computational number theory.

3.1.1. Contributions and organisation of the chapter. The chapter is organized as
follows.

Ideal lattices and the Arakelov class group. We open this chapter with a few preliminaries
on ideal lattices and the Arakelov class group in Section 3.2. After fixing some notation and
recalling the main definitions, we explore the classical connection between the two notions:
the Arakelov class group can be viewed as the group of all ideal lattices up to isometry.
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This connection, long known by number theorists [Bay99, Sch08], had been absent from
the cryptographic literature until the article [[BDPW20]]. Remarkably, the Arakelov class
group is a combination of two groups that had already led to significant cryptanalytic
advances: the unit torus [CGS14, CDPR16] and the class group [[CDW17, CDW21]].

Random walks in the Arakelov class group. In Section 3.3, we present the main result
of our article [[BDPW20]]: random walks in the Arakelov class group equidistribute rapidly,
assuming the Generalized Riemann Hypothesis. Contrary to the random walks in previous
chapters, we are now walking in an infinite, continuous space. We thus consider random
walks which combine two kinds of steps: “continuous” steps, akin to a Brownian motion,
and “discrete” steps, capable of jumping between connected components.

Average hardness of ideal lattices. The motivation for the equidistribution theorem is the
following. Elements of the Arakelov class group are, essentially, ideal lattices. From a
starting ideal lattice, a random walk rapidly reaches a uniformly random ideal lattice.
Through a (short) random walk, one can transfer a solution of Id-SVP (i.e., a short
vector) from the target to the source, with a small loss on the approximation factor. In
other words: if one can solve Id-SVP for uniformly random ideal lattices, then one can
solve Id-SVP for any ideal lattice. It is a worst-case to average-case reduction.

We explore this idea in Section 3.4. In the article [[BDPW20]], we follow this strategy
to obtain a worst-case to average-case reduction where “average” means uniform in the
Arakelov class group (in the sense of the Haar measure). There is a critical difficulty:
the Arakelov class group being continuous, this computational result requires rounding,
resulting in ideals of rather large norm.

We refine this result in the article [[FPSW23]]. Combining the Arakelov random walks
with reductions of Gentry [Gen09, Gen10], we obtain a worst-case to average-case reduc-
tion where “average” means uniformly random prime ideal of small norm. Using the
reduction from Pellet-Mary and Stehlé [PS21], this notably leads to the first distribution
for instances of the NTRU cryptosystem with a polynomial modulus whose hardness is
supported by a worst-case lattice problem.

A rigorous tool for algorithmic number theory. Long before finding a place in cryptography,
ideal lattices have been a central object of interest in number theory. They naturally arise
in many computational number theoretic questions, like the computation of the class
group and unit group of a number field, or perhaps more surprisingly, the factorisation of
integers.

Many algorithms for these fundamental problems (like the computation of class groups
in subexponential time) are not fully understood: their analysis resorts to heuristic as-
sumptions. This persistent need for heuristic assumptions often stems from a step of this
form: given an ideal class [a] of a number field, find a representative b ∈ [a] belonging
to a particular family S of ideals (for instance, the family of prime ideals, or smooth
ideals). It is relatively simple to design an algorithm for this task: sample a random
b ∈ [a], and hope that it belongs to the desired family S. One then heuristically ar-
gues that the probability that b ∈ S should be proportional to the density of S. For
instance, the subexponential density of smooth ideals heuristically implies that one can
find smooth representatives in subexponential time. This is the heart of state-of-the-art
algorithms to compute class groups, unit groups, or generators of principal ideals in num-
ber fields [BF14, Buc88, LL93], and has long constituted a theoretical obstacle overcome
only by heuristic arguments (with the exception of quadratic fields [HM89]).

In Section 3.5, we present the result of the article [[BPW24]]: a general strategy to solve
these ideal sampling tasks rigorously and efficiently. We remove the need for heuristic
assumptions by leveraging the rigorous randomization properties of walks in the Arakelov
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class group. We illustrate the power of this technique by presenting the first algorithm for
computing class groups and unit groups of arbitrary number fields that provably runs in
probabilistic subexponential time.

3.2. Ideal lattices and the Arakelov class group

In this section, we define the notions of ideal lattice and Arakelov class groups, and explain
their connection. A more detailed account can be found in the main inspiration for this
section: the article [Sch08].

3.2.1. Ideal lattices. Fix a number field K of degree n = [K : Q] and discriminant ∆K .
The field K is a vector space of dimension n over Q, and it has a canonical R-valued inner
product. In algebraic terms, the inner product is defined as 〈α, β〉 = Tr(αβ∗) where −∗ is
the canonical involution of the étale R-algebra K⊗R. The Minkowski embedding provides
a more explicit description as follows. The number field K has n field embeddings into C,
which are divided into nR real embeddings and nC conjugate pairs of complex embeddings,
with n = nR + 2nC. Let

KR =

{
(xσ)σ ∈

⊕
σ:K→C

C

∣∣∣∣∣ xσ = xσ

}
∼= K ⊗R,

where the sum is over all field embeddings σ : K → C. We consider the Euclidean norm
‖(xσ)σ‖ =

(∑
σ |xσ|2

)1/2 on KR. The Minkowski embedding is the map Ψ : K → KR :
α 7→ (σ(α))σ. The field K inherits the Euclidean structure of KR through this embedding.
More explicitly, for α ∈ K, we have ‖α‖2 =

∑
σ |σ(α)|2. Abusing notation, we treat Ψ

simply as an inclusion K ⊂ KR.
Let OK be the ring of integers of K. It is a discrete additive subgroup of rank n, hence

a lattice in the vector space K. A fractional ideal in K is any subset of K of the form αa
where α ∈ K× and a a non-zero ideal in OK We denote by IK the group of fractional
ideals of K. Any fractional ideal is also a lattice in K. This is essentially what we define
as an ideal lattice in K, with one last generalization: we extend the scalars to R, leading
to the following definition.

Definition 3.1. An ideal lattice over K is a lattice in KR of the form xa, where x ∈ K×R
and a is an ideal in OK ⊂ K ⊂ KR. Equivalently, an ideal lattice over K is a lattice in
KR of rank n which is also an OK-submodule.

We denote by IdLatK the set of all ideal lattice over K. Note that it forms an abelian
group, with xa · yb = xyab, and neutral element OK . The (co)volume of an ideal lattice is

Vol(xa) = |∆K |1/2N(a)
∏
σ

|xσ|.

Our problems of interest are invariant under rescaling. We thus define the subgroup
IdLat0K = {L ∈ IdLatK |Vol(L) = Vol(OK)}.

Definition 3.2. An isometry between two ideal lattices L1, L2 ⊂ KR is an isomorphism
ϕ : L1 → L2 of OK-modules such that ‖ϕ(z)‖ = ‖z‖ for all z ∈ L1. Equivalently, it is a
map of the form ϕξ : z 7→ ξz for some ξ = (ξσ)σ ∈ KR with |ξσ| = 1 for all σ. If two ideal
lattices L1 and L2 are isometric, we write L1

∼= L2.

The set IsoK = {L ∈ IdLatK | L ∼= OK} is a subgroup of IdLat0K , and the quotient
IdLat0K /IsoK = IdLat0K / ∼=

forms the group of (normalised) ideal lattices up to isometry. This is almost the Arakelov
class group: the latter is defined through a different formalism, but the result is isomorphic.
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3.2.2. The Arakelov class group. In this section, we define the Arakelov class group
Pic0K , and outline the proof that it is isomorphic to IdLat0K / ∼=, the group of ideal lattices
up to isometry.

A finite place of K is a (non-zero) prime ideal in OK . An infinite place of K is a
field embedding K → C up to complex conjugation; in other words, it is either a real
embedding ν : K → R, or a pair ν = {σ, σ} of complex embeddings. Given an embedding
σ, we write νσ for the corresponding place; reciprocally, for any place ν, we let σν be one
of the corresponding embeddings. There are exactly nR + nC ≤ n infinite places. The
group of Arakelov divisors is

DivK =
⊕
p

Z×
⊕
ν

R.

We denote the canonical basis elements with the symbols LpM and LνM (the divisor with
value 1 at p or ν respectively, and 0 everywhere else). Then, an arbitrary divisor can be
written as

a =
∑
p

np · LpM +
∑
ν

xν · LνM.

The degree of an Arakelov divisor is given by the group homomorphism
deg : DivK −→ R∑

p

np · LpM +
∑
ν

xν · LνM 7−→
∑
p

np log(N(p)) +
∑
ν real

xν +
∑

ν complex

2xν .

The kernel of this map is the group Div0
K of degree-zero divisors.

Given any element α ∈ K×, one can construct an Arakelov divisor via the map

div : K× 7−→ DivK : α 7−→
∑
p

ordp(α) · LpM−
∑
ν

log |σν(α)| · LνM.

Divisors of the form div(α) are called principal divisors, and the product formula states
that principal divisors have degree zero, i.e., div(K×) ⊂ Div0

K .

Definition 3.3. The Arakelov class group of K is the group Pic0K = Div0
K /div(K×). For

any Arakelov divisor a, we denote by [a] its class in Pic0K .

3.2.3. Arakelov divisors and ideal lattices. In this section, we explain the connection
between Arakelov divisors and ideal lattices, culminating in the following theorem.

Theorem 3.4. The “exponential map” induces an isomorphism Pic0K → IdLat0K / ∼=.

In other words, the Arakelov class group encodes the collection of ideal lattices up to
isomorphism and rescaling. As the “exponential” terminology suggests, the Arakelov class
group can informally be thought of as a “logarithmic space” for ideal lattices.

The connection between Arakelov divisors and ideal lattices L = xa (where x ∈ K×R
and a is a (fractional) ideal) can be understood by separating the “finite” part and the
“infinite” part. First, the “finite” part

⊕
p Z accounts for the a-component: the unique

factorisation of fractional ideals into prime ideals is a bijection between
⊕

p Z and the
collection of fractional ideals. We thus have a bijection between divisors and fractional
ideals:

Expfin :
⊕
p

Z −→ IK :
∑
p

np · LpM 7−→
∏
p

pnp .

Its inverse is the factorisation map

Logfin : IK −→
⊕
p

Z : a 7−→
∑
p

ordp(a) · LpM.
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Second, the “infinite” part
⊕

ν R somehow accounts for the continuous part of an ideal
lattice: the x-component. That may not be as clear: how does

⊕
ν R compare with K×R ?

We at least have an injective group homomorphism

Exp∞ :
⊕
ν

R −→ K×R :
∑
ν

xν · LνM 7−→ (exνσ )σ.

It is not surjective, so does not have an inverse, but it does have a retraction:

Log∞ : K×R −→
⊕
ν

R : (yσ)σ 7−→
∑
ν

log |yσν | · LνM.

Remark 3.5. The composition of the inclusion K → KR with Log∞ is the map Log : K× →⊕
ν R often referred to as the Logarithmic embedding of K, which plays an important role

in the cryptanalysis of ideal lattices [CGS14, CDPR16], [[CDW21]].

Regrouping the “finite” and “infinite” parts, we obtain a map

Exp = Expfin ·Exp∞ : DivK −→ IdLatK .

It is not surjective, because Exp∞ is not. However, the induced map to the quotient
IdLatK / ∼= is surjective. Indeed, for any ideal lattice xa, we have an isomorphism
xa → (ξx)a : z 7→ ξx where ξ = (|xσ|/xσ)σ, and the element ξx = (|xσ|)σ ∈ K×R is
in the image of Exp∞. In particular, IdLatK / ∼= is isomorphic to a quotient of DivK . It
can be verified that the kernel of Exp is the group div(K×) of principal divisors, hence
DivK /div(K×) ∼= IdLatK / ∼=. The last step to obtain Theorem 3.4 is to prove that the
subgroup of normalized ideal lattices IdLat0K corresponds to the subgroup of degree-zero
divisors Div0

K . This follows from the formula

Vol(Exp(−)) = Vol(OK)edeg(−).

In particular, the exponential map restricts and co-restricts to

Exp0 : Div0
K −→ IdLat0K ,

and we obtain Theorem 3.4.

Remark 3.6. Note that if one wishes to work with ideal lattices up to rescaling, but not
up to isomorphism, one could consider the oriented Arakelov class group [Sch08].

3.2.4. Structure of the Arakelov class group. The Arakelov class group Pic0K pro-
vides a convenient formalism to study the space of ideal lattices (up to isomorphism and
scaling): it is naturally a compact topological group. In this section, we discuss the
structure of this group, summarized in the short exact sequence

(3.1) 0 −→ TK −→ Pic0K −→ Cl(K) −→ 0,

where Cl(K) is the class group of K, and TK is a torus (the quotient of a real vector space
by a lattice), the so-called Log-unit torus of K. Geometrically, the Arakelov class group is
thus a finite union of copies of the torus TK : one copy for each ideal class. We illustrate
this structure in Figure 3.1.

Let us discuss this short exact sequence in greater detail. The map Pic0K −→ Cl(K)
is the most straightforward. Consider the natural morphism

Div0
K −→ IK∑

p

np · LpM +
∑
ν

xν · LνM 7−→
∏
p

pnp .
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Log-unit torus T Arakelov class group Pic0K Class group Cl(K)

Figure 3.1. Schematic representation of the Arakelov class group, a com-
bination of the class group and the Log-unit torus.

Evidently, principal divisors are sent to principal ideals, thereby inducing the morphism
Pic0K → Cl(K) in the second half of the sequence (3.1).

It remains to understand the first half of (3.1). The Log-unit torus TK is defined as
follows. Consider the real vector space

H =

(xν)ν ∈
⊕
ν

R

∣∣∣∣∣∣
∑
ν real

xν +
∑

ν complex
2xν = 0

 ⊂⊕
ν

R.

This vector space H is generated by the image of O×K through the logarithmic embedding
Log : K× →

⊕
ν R (see Remark 3.5), and Log(O×K) is a full-rank lattice in H. The

Log-unit torus is the quotient TK = H/Log(O×K). The map TK → Pic0K in the exact
sequence (3.1) is induced by the obvious map

H −→ Div0
K : (xν)ν 7−→

∑
ν

xν · LνM.

In summary, we have the following commutative diagram, where each line is exact,
and each vertical arrow is the natural quotient map:

0 H Div0
K IK 0

0 TK Pic0K ClK 0.

3.3. Random walks in Arakelov class groups

This section presents the new versatile tool developed in [[BDPW20]]: random walks in the
Arakelov class group, and their rapid equidistribution property. The goal is to design a
process which, starting with an arbitrary ideal lattice, applies a sequence of small random
modifications. Each modification, a step in the walk, affects the shape of the lattice in a
well-controlled manner. The result is a random ideal lattice, closely related to the original
one, but well distributed in the space of ideal lattices.

3.3.1. The random walk. Before stating the equidistribution theorem, we must define
the random walks under consideration. The design of the walk is motivated by the struc-
ture of the Arakelov class group discussed in Section 3.2.4. The group is a combination
of a continuous part, the unit torus TK , and a discrete part, the class group Cl(K). The
walk is thus a combination of a discrete walk and a continuous walk.
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The random walk on the Arakelov class group Pic0K is best described as a walk on
Div0

K , projected to Pic0K . For any probability distribution D on Div0
K , we write [D] for

the corresponding quotient distribution on Pic0K .

The discrete walk. A discrete step is essentially a step of this form: from an arbitrary
Arakelov divisor a, sample a random prime ideal p, and go to a + LpM. The new divisor
a + LpM does not have degree 0, so we normalize it to

a + LpM−
∑
ν

log(N(p))

n
· LνM.

We also write it as a + d0(p), using the map

d0 : IK −→ Div0
K : a 7−→

∑
p

ordp(a) · LpM−
∑
ν

log(N(a))

n
· LνM.

One needs to fix a distribution for p. Fix a bound B, and let PK(B) be the set of all
prime ideals in OK of norm at most B. We consider p uniformly distributed in PK(B).
Definition 3.7 (Discrete step, discrete walk). Let D be any probability distribution on
Div0

K . We denote by WB(D) the distribution of a + d0(p), where a is sampled with
distribution D, and p ∈ PK(B) is uniform. In other words, WB(D) is the distribution
obtained by sampling from D, then taking a discrete step. A discrete walk of length k with
initial distribution D consists in sampling from D then taking k discrete steps sequentially.
The endpoint of a discrete walk of length k has distribution W k

B(D).
On the side of ideal lattices, a discrete step consists in replacing the ideal lattice xa

with the random sublattice xap ⊂ xa, and rescaling it to normalise the volume.

A motivation for this choice of step comes from previous work on random walks in class
groups: the equidistribution result of Jao, Miller and Venkatesan [JMV09], presented in
Section 2.4.2. They define a similar random step in the class group: from a starting ideal
class [a], go to the class [ap] for some uniformly random prime p ∈ PK(B). Assuming
GRH, the main theorem of [JMV09] states that for some B = Oε((n log∆K)2+ε), applying
this step k times (i.e., a length k random walk) converges to the uniform distribution on
Cl(K) at an exponential rate in k.

In particular, we readily obtain that our discrete walk in the Arakelov class group
rapidly equidistributes among the # Cl(K) connected components. The discrete walk
“jumps” between connected components, and very effectively so.

The continuous walk. Taking discrete steps from any starting point, no matter how long
the walk, the distribution of the endpoint will remain discrete. To hope for a convergence
to the uniform distribution in the sense of the total variation distance (i.e., convergence
in L1(Pic0K)), we need to “smooth it out”. This is where the continuous walk comes in, as
a kind of “blurring” step.

Geometrically, a starting point [a] in the Arakelov class group is a point on a torus,
a copy of the unit torus TK . A continuous walk consists in replacing [a] with a random
nearby point on the torus: we consider a Gaussian distribution centered at [a] and with
somewhat small standard deviation.
Definition 3.8 (Continuous walk). Let D be any probability distribution on Div0

K . We
denote by W s

∞(D) the distribution of a + x, where a is sampled with distribution D, and
x ∈ H ⊂

⊕
ν R ⊂ Div0

K is sampled from the Gaussian distribution on H with standard
deviation s centered at the origin.

On the side of ideal lattices, this continuous walk consists in replacing an ideal lattice
xa with a slight deformation of it, i.e., a lattice δxa with δ ∈ K×R close to the identity.
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The Arakelov random walk. Any probability distribution on the Arakelov class group Pic0K
is of the form [D] for some distribution D on Div0

K . We thus define the Arakelov random
walk as follows.

Definition 3.9 (Arakelov random walk). Let B, k, s > 0 be parameters. Let [D] be a
probability distribution on the Arakelov class group Pic0K . The Arakelov random walk
with initial distribution [D], prime bound B, length k, and standard deviation s is the
following process: sample a starting point [a] from [D], then apply the continuous walk
with standard deviation s, and k discrete steps with prime bound B. The distribution of
the endpoint is [W k

B(W
s
∞(D))].

3.3.2. Rapid equidistribution. The main tool developed in [[BDPW20]] is the follow-
ing theorem, which states that Arakelov random walks rapidly converge to the uniform
distribution (for the Haar measure).

Theorem 3.10 (Simplified form of [[BDPW20, Theorem 3.3]]). Let ε > 0 and s > 0.
Assuming the Generalized Riemann Hypothesis, there are bounds

B = poly(n, log(∆K), log log(1/ε), log(1/s)), and
κ = log(∆K) · poly(logn, log log(∆K), log(1/ε), log(1/s))

such that for any initial distribution [D] on Pic0K , and any k ≥ κ, the endpoint of the
Arakelov random walk with prime bound B, length k, and standard deviation s is at total
variation distance at most ε from the uniform distribution (for the Haar measure on Pic0K).

Remark 3.11. Instead of the discrete walk being a succession of small steps, one could take
one large leap: multiplication by a single prime ideal of larger norm. One obtains a result
similar to Theorem 3.10, with κ = 1 and B = poly(nn,∆K). More generally, a condition
of the form Bκ = poly(nn,∆K) suffices for rapid equidistribution.

Sketch of the proof. The distribution of the endpoint of the random walk is [W k
B(W

s
∞(D))].

It is obtained by sampling [a] from [D], then applying the continuous walk and k discrete
steps with starting point [a]. Observe that it is also the distribution of [a] + [b] where [a]
is sampled from [D], and [b] is sampled for the distribution W k

B(W
s
∞(10)) (the endpoint of

a random walk with starting point [0]). To prove that [W k
B(W

s
∞(D))] is close to uniform,

it is thus sufficient to prove that [W k
B(W

s
∞(10))] is close to uniform.

The distribution Gs =W s
∞(10) is the Gaussian distribution on H with standard devi-

ation s centered at the origin.
The discrete step can be seen as an operator WB : L2(Pic0K)→ L2(Pic0K), sending any

function f : Pic0K → C to

WB(f) : a 7−→ 1

#PK(B)

∑
p∈PK(B)

f(a− d0(p)),

averaging over all “incoming neighbors” of a. The proof proceeds with a spectral analysis
of WB, and decomposing [Gs] as a sum of eigenfunctions. Showing that all the eigenvalues
are small except for the constant eigenfunction, all terms in the decomposition of [W k

B(Gs)]
vanish at an exponential rate in k — except the constant term, which corresponds to the
uniform distribution.

The discrete walk operator WB is in fact a Hecke operator, whose spectral properties
are well studied. It can easily be verified that the characters χ ∈ P̂ic0K are eigenfunctions
with eigenvalue

λχ =
1

#PK(B)

∑
p∈PK(B)

χ(d0(p)),
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where χ is the complex conjugate of χ. In other words, for any χ ∈ P̂ic0K , we have
WB(χ) = λχχ. In particular, the constant function 1 has eigenvalue λ1 = 1, and all other
eigenvalues satisfy |λχ| ≤ 1. Decomposing [Gs] as a sum of eigenfunctions, we get

[Gs] =
1

Vol(Pic0K)
+

∑
χ∈P̂ic0K

cχχ,

where cχ ∈ C are the Fourier coefficients of [Gs]. Applying the discrete walk operator, we
get

[W k
B(Gs)] =

1
Vol(Pic0K)

+
∑

χ∈P̂ic0K

λkχcχχ.

As soon as |λχ| < 1, the terms λkχcχ vanish as k grows. But they do not vanish uniformly,
as eigenvalues λχ could be arbitrarily close to 1. To proceed, we distinguish two kinds of
terms according to the analytic conductor q∞(χ):

• Low-frequency characters. When the analytic conductor q∞(χ) is small, we can
think of χ as a low frequency character. In that case, the eigenvalue λχ is reason-
ably small. Indeed, applying classical bounds from analytic number theory [IK04,
Theorem 5.15], we have

(3.2) |λχ| ≤
1

B1/2
· poly(n, log(∆K), log(B), q∞(χ)),

which can be made arbitrarily small by choosing B large enough. We can enforce
a clear, uniform gap |λχ| < 1/2 < 1, and the corresponding terms λkχcχχ vanish
rapidly and uniformly.
• High-frequency characters. When the analytic conductor q∞(χ) is large, we can

think of χ as a high frequency character. In such a case, the above bound (3.2) is
vacuous: the right-hand side could be larger than 1, while we know that λχ ≤ 1.
This is where our choice of the Gaussian distribution Gs comes in handy: its
Fourier coefficients cχ vanish rapidly for large “frequencies” q∞(χ). In other
words, while the decaying rate of λkχcχχ may not be so rapid in k, the coefficient
cχ is vanishingly small to begin with, when q∞(χ) is large.

In summary, we have

[W k
B(Gs)] =

1
Vol(Pic0K)︸ ︷︷ ︸
The uniform
distribution

+
∑

χ of low
frequency

λkχcχχ

︸ ︷︷ ︸
Decays rapidly with k

+
∑

χ of high
frequency

λkχcχχ

︸ ︷︷ ︸
Small from the start,
and cannot increase

,

which means that [W k
B(Gs)] rapidly approaches the uniform distribution. �

3.4. Average hardness of ideal lattices

Our original motivation for the study of random walks in the Arakelov class group was to
study the average hardness of computational problems in ideal lattices. We consider the
following version of the shortest vector problem for ideal lattices.

Problem 3.12 (Id-HSVPγ). The ideal Hermite shortest vector problem with approxima-
tion factor γ is the following computational problem. Given a number field K of degree n
and a fractional ideal lattice Λ, find x ∈ Λ such that 0 < ‖x‖ ≤ γ ·Vol(Λ)1/n.

Remark 3.13. We restrict the problem to fractional ideal lattices (i.e., fractional ideals seen
as ideal lattices through the Minkowski embedding) to avoid dealing with real numbers in
the input of the problem. Any ideal lattice can be approximated to arbitrary precision by
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a fractional ideal (fractional ideals are dense in IdLatK), and fractional ideals are much
easier to manipulate. We consider them to be represented by a basis in Hermite Normal
Form (with respect to a well-chosen basis of K).

An average-case version of this problem requires a probability distribution on instances
of Id-HSVPγ . At this point of the chapter, the reader may suspect a natural candidate:
the uniform distribution for the Haar measure. For computational purposes, we would
rather have a discrete distribution supported on fractional ideal lattices (or even integral
— we can always rescale a fractional ideal to an integral one). For complexity-theoretic
or cryptographic applications, one looks for distributions with certain valuable properties,
like being efficiently sampleable, easy to analyse, or supported on integral ideals of “small”
norm. Three distributions for Id-HSVPγ instances have been considered.

(1) Inverse-of-prime distribution. In [Gen09, Gen10], Gentry considers ideal lattices
sampled as the inverse of a uniformly random prime ideal with norm in a pre-
scribed interval [A,B]. We refer to the corresponding average-case problem as
P−1-Id-HSVPγ .

(2) Discrete Haar distribution. In the article [[BDPW20]], we consider a discretization
of the uniform distribution for the Haar measure. We refer to the corresponding
average-case problem as Haar-Id-HSVPγ .

(3) Prime distribution. In the article [[FPSW23]], we consider ideal lattices sampled as
a uniformly random prime ideal with norm in a prescribed interval [A,B] (similar
to [Gen09, Gen10], but without the inversion). We refer to the corresponding
average-case problem as P-Id-HSVPγ .

These articles prove worst-case to average-case reductions for Id-HSVPγ for each of these
distributions (with a bounded loss in the approximation factor).

The “inverse of prime” distribution of [Gen09] may be surprising. This choice is ex-
plained by the fact that [Gen09] focuses on the bounded distance decoding problem (BDD),
a problem dual to SVP. It is a convenient choice for studying BDD, but ill-suited for SVP.
Indeed, recall that we value distributions supported on integral ideals of “small” norm.
Gentry’s reduction allows for interval boundaries A and B as small as ∆O(1)

K · nO(n). Sam-
pling p of norm at most B, inverting it, then rescaling it to an integral ideal yields an
instance of the form N(p)/p, with norm of the order of ∆O(n)

K · nO(n2). This is too large
for certain applications. Also note that the worst-case to average-case reduction of Gentry
(and the algorithm to sample from this distribution) requires access to a factoring oracle
(and otherwise runs in classical polynomial time).

The “discrete Haar distribution” is perhaps the most natural. It is mathematically
very convenient, thanks to the properties of the Haar distribution, such as the rapid
equidistribution of random walks, Theorem 3.10. The worst-case to average-case reduc-
tion (and the algorithm to sample from this distribution) from [[BDPW20]] runs in classical
polynomial time, with no need for a factoring oracle. However, to obtain a “good enough”
approximation of the (continuous) Haar distribution, we define a discretization supported
on ideals of rather large norm, up to ∆

O(1)
K · 2O(n2). We discuss this case in greater detail

in Section 3.4.1.
Finally, the “prime distribution” is supported on integral ideals of much smaller norm:

the bounds A and B can be as small as ∆O(1)
K · nO(n). It is the first distribution supported

on integral ideals of norm sufficiently small for certain applications. The worst-case to
average-case reduction proved in [[FPSW23]] unlocks the first distribution on instances for the
NTRU cryptosystem with a polynomial modulus whose hardness is supported by a worst-
case lattice problem. The analysis of this distribution combines the results of [Gen09] with
the techniques of [[BDPW20]] (random walks on Arakelov class groups). Like the reduction
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of [Gen09], it requires a factoring oracle (and otherwise runs in classical polynomial time).
We discuss this case in greater detail in Section 3.4.2.

3.4.1. Hardness for the discrete Haar distribution. The random walks studied in
Section 3.3 hint at a natural strategy for a worst-case to average-case reduction, in the
same vein as Section 1.2.3. Suppose we have an oracle for Haar-Id-HSVPγ , i.e., solving
with good probability for “uniformly random” ideals. Let Λ be an arbitrary ideal lattice
(a worst-case instance). We apply the following steps:

(1) Randomization: from the starting point Λ, one can generate a random walk
following Section 3.3.1. It first consists in a discrete walk, replacing Λ with the
sublattice Λ′ = (

∏
i pi)Λ, for a random sequence of prime ideals (pi)i. Then, the

continuous walk replaces Λ′ with Λ′′ = δΛ′ where δ ∈ K×R is a random “distorsion”
close to the identity.

(2) Solving the average case: call the Haar-Id-HSVPγ oracle for the random ideal
Λ′′. Since Λ′′ is close to uniform, the average-case oracle succeeds with good
probability. It returns an element x′′ ∈ Λ′′ such that 0 < ‖x′′‖ ≤ γ ·Vol(Λ′′)1/n.

(3) Pulling back the solution: Return x = δ−1x′′ ∈ δ−1Λ′′ = Λ′ ⊆ Λ.
As required, we get x ∈ Λ. Let us estimate the approximation factor achieved by this
strategy. Since δ is close to the identity, we have ‖x‖ ≈ ‖x′′‖. Let w =

∏
i pi be the ideal

corresponding to the discrete walk. We obtain

‖x‖ ≈ ‖x′′‖ ≤ γ ·Vol(Λ′′)
1
n ≈ γ ·Vol(Λ′)

1
n = (γN(w)

1
n ) ·Vol(Λ)

1
n .

Using the bounds B and κ from Theorem 3.10, we have N(w)1/n ≤ Bκ/n. We obtain a
reduction from worst-case Id-HSVPγ′ to average-case Haar-Id-HSVPγ with a loss of
γ′/γ ≈ Bκ/n in the approximation factor. This loss is polynomial in the degree n and the
root-discriminant ∆

1/n
K . More precisely, we prove in [[BDPW20, Theorem 4.5]] that we can

achieve a loss of

γ′/γ = O(Bκ/n) ≤

{
Õ
(
n1/2

)
for prime-power cyclotomic fields, assuming h+K ≤ (logn)n

Õ
(
n1−nC/n ·∆1/(2n)

K

)
for arbitrary number fields.

with h+K the class number of the maximal totally real subfield.

Discretization. The above discussion totally abstracts away the (significant) trouble of
discretization. In [[BDPW20]] we introduce a rounding procedure, which takes as input
an arbitrary ideal lattice, and returns a good approximation by a fractional ideal. The
actual average-case distribution for Haar-Id-HSVPγ is the result of sampling uniformly
at random for the Haar measure, then applying the rounding procedure. The rounding
procedure is itself randomized, and has the following properties:

• The output is a good approximation of the input — its geometry is almost the
same.
• Given an input ideal lattice, the distribution on the output depends only on its

isomorphism class — not on a representative of the class.
• As a fractional ideal, the numerator and denominator of the output have bounded

norms.
When the input is a fractional lattice, there is an efficient algorithm to apply this rounding
procedure. In particular, one can efficiently sample from the discretized Haar distribution.

3.4.2. Hardness for random small-norm prime ideals. In the article [[FPSW23]], we
consider the average hardness of P-Id-HSVPγ , for ideal lattices sampled as a uniformly
random prime ideal with norm in a prescribed interval [A,B].
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Despite the similarity with P−1-Id-HSVPγ , mimicking the technique of [Gen09] does
not work. The reduction in [Gen09] utilises the fact that O ⊂ p−1, readily providing some
reasonably small vectors like 1 ∈ p−1. There is no exploitable analog for p.

However, we can still exploit the main result of [Gen09]: the worst-case to average-case
reduction from Id-HSVPγ′′ to P−1-Id-HSVPγ′ (for some approximation factors γ′ and
γ′′). We prove in [[FPSW23]] that P−1-Id-HSVPγ′ reduces to P-Id-HSVPγ , and deduce
the average-case hardness of P-Id-HSVPγ by composition of reductions:

Id-HSVPγ′′ ≤
[Gen09]

P−1-Id-HSVPγ′ ≤
[[FPSW23]]

P-Id-HSVPγ .

The last reduction works as follows. Suppose we have an oracle for P-Id-HSVPγ , and we
are given an instance p−1 of P−1-Id-HSVPγ′ . We proceed as follows:

(1) Call the oracle on p, which finds (with good probability) a “small” element xp ∈ p

such that 0 < ‖xp‖ ≤ γ ·Vol(p)1/n.
(2) Sample a pair (b, y) such that b is a uniformly random integral ideal of bounded

norm, and y ∈ (bp)−1 is small. This is some kind of trapdoor generation: first
generating an ideal b, then finding a small element y would be infeasible, but
generating both “simultaneously” can be done. It is not obvious how to perform
such a sampling task. For the moment, consider that this is feasible thanks to
the knowledge of a small element xp ∈ p, and using a factoring oracle.

(3) If b is not prime, try again from the start.
(4) Now that we have ensured that b is a random prime ideal, we can call the oracle

(for the second time) on b, which finds a “small” element xb ∈ b such that
0 < ‖xb‖ ≤ γ ·Vol(b)1/n.

(5) Return x = xb · y ∈ b · (bp)−1 = p−1.
We indeed obtain x ∈ p−1 as required, and x is a product of “small” elements, so it is itself
“small”. It is a solution of P−1-Id-HSVPγ′ for some approximation factor γ′. We prove
in [[FPSW23, Corollary 5.3]] that this method achieves a loss in the approximation factor of
γ′/γ = O(n∆

1/n
K ).

The trapdoor generation of Step 2. Step 2 is the most subtle. It requires a combination of
ingredients from [Gen09, Gen10] and from the upcoming Section 3.5.1 on ideal sampling.
Here, we only explain the ingredient from [Gen09, Gen10], which solves a simpler problem
of the same type: sampling a random ideal a together with a small element α ∈ a.

From a random ideal, it may be hard to extract a small element, but one could proceed
the other way around: first sample a small element α ∈ OK , then let a = αOK . By
construction, α is small, and α ∈ a. The resulting ideal a may be random, but it is far
from any natural notion of uniformity: it is always a principal ideal.

To correct this obvious bias, one could replace the ideal αOK with a random ideal
containing α — in other words, a random ideal dividing αOK . This is where the need
for a factoring oracle arises: compute the factorization αOK =

∏
i q

ei
i into distinct prime

ideals qi. One can then sample one of the ideals qi uniformly at random, and return (α, qi).
Three obvious biases remain:

(1) First, the distribution is now supported on prime ideals; this is not an issue.
(2) Second, small prime ideals are significantly overrepresented. This bias can be

corrected by ignoring ideals below some bound A, and some rejection-sampling.
(3) Third, large principal prime ideals are overrepresented. Indeed, if αOK happens

to be prime, it is returned unchanged. More generally, there is a bias towards
large primes whose inverse class contains a small ideal. This bias can be corrected
by ignoring ideals above some bound B.
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One can in fact show that for some appropriate bounds A and B, the above procedure
returns a pair (α, q) where α ∈ q is small and q is close to uniformly distributed among
prime ideals with norm in the interval [A,B].

3.5. A rigorous tool for algorithmic number theory

In this final section, we shift our attention away from cryptography, and towards some
of the most fundamental problems in computational number theory: the computation of
class groups, unit groups, or a variety of other problems related to the manipulation of
ideals in number fields.

Many number theoretic algorithms resort to heuristic assumptions for their analysis.
This issue concerns even these field-defining problems. This persistent need for heuristic
assumptions often stems from a step of this form: given an ideal class [a] of a number field
K, find a representative b ∈ [a] belonging to a particular family S of ideals (for instance, the
family of smooth ideals). It is relatively simple to design an algorithm for this task: sample
a random representative b ∈ [a], and hope that it belongs to the desired family S. One then
heuristically argues that the probability that b ∈ S should be proportional to the density
of S. For instance, the subexponential density of smooth ideals heuristically implies that
one can find smooth representatives in subexponential time. This is the heart of state-of-
the-art algorithms to compute class groups, unit groups, or generators of principal ideals
in number fields [Buc88, LL93, BF14], and has long constituted a theoretical obstacle
overcome only by heuristic arguments (with the exception of quadratic fields [HM89]).

In the paper [[BPW24, Part 1]], we propose a general strategy to solve these ideal sam-
pling tasks rigorously and efficiently, assuming only the Generalized Riemann Hypothesis.
Illustrating the power of this technique, we present in [[BPW24, Part 2]] the first algorithm
for computing class groups and unit groups of arbitrary number fields that provably runs
in probabilistic subexponential time, assuming GRH.

3.5.1. Sampling ideals in a class. Let S be an arbitrary family of ideals, and SB the
family of B-smooth ideals (i.e., products of prime ideals of norm at most B). In [[BPW24,
Part 1]], we describe an efficient algorithm that samples b ∈ [a] such that b ∈ S · SB
with probability proportional to the density of S. The set SB is used to randomize the
input (it corresponds to the discrete walk of Section 3.3), and B can be chosen as small as
(log∆K)O(1). In greater generality, we prove this result for arbitrary ray class groups, and
when the set SB is restricted to ideals whose prime factors fall in a prescribed subgroup.
For concreteness, Theorem 3.14 below is a specialization of the main theorem of [[BPW24,
Part 1]] to the simplest case, without ray nor subgroups. Here, the quantity δS [rn] is the
local density of S, i.e., the proportion of ideals of norm at most rn that belong to S. It is
essentially δS [rn] ≈ #{b∈S|N(b)<rn}

#{b|N(b)<rn} , and tends to the natural density as r →∞.

Theorem 3.14. Assuming the Generalized Riemann Hypothesis, there is a randomized
algorithm A such that the following holds. Let K be a number field, with degree n,
discriminant ∆K , and ring of integers OK . Let a ⊆ OK be an integral ideal. Let ε ∈ R>0,
let b ≥ 2 be an integer, and let r ≥ 16 · b2n/b · n7/2 · |∆K |3/(2n).

Given the above data, the algorithm A outputs β ∈ a such that βa−1 ∈ S ·SB with prob-
ability at least δS [rn]/3− ε, for some smoothness bound B = (log |∆K |+ log log(1/ε))O(1)

and for any set S of integral ideals. Furthermore, the algorithm runs in expected polynomial
time in log |∆K |, log(N(a)), log(1/ε), bb, and in the length of the input.

Remark 3.15. Note that the algorithm is described in a slightly different way than the
above discussion: given a, we find β ∈ a such that βa−1 ∈ S · SB. The ideal βa−1 is in the
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inverse class of a, so up to an inversion, this problem is equivalent to the ideal sampling
problem discussed above.

Overview of the technique. The folklore strategy to solve ideal sampling tasks is the fol-
lowing. The input ideal a is seen as a lattice, via the Minkowski embedding. One may
find a reasonably short basis of a (for instance, by means of LLL [LLL82]), which then
allows one to sample a reasonably short random element β ∈ a, and hope that the ideal
b = βa−1 belongs to the desired family S. One then typically argues (heuristically!) that
the probability of success is proportional to the density of S.

To obtain a rigorous sampling algorithm, we proceed in two steps. First, we prove that
a fairly straightforward strategy as above indeed has the desired probability of success when
the input a is treated as a random ideal lattice with uniformly random Arakelov class. More
precisely, we prove that there is a reasonably small “ball” rB (in the embedding space KR)
such that the expected density of elements β ∈ a ∩ rB such that βa−1 ∈ S is proportional
to the density of S.

Second, we deal with arbitrary input a by randomizing its Arakelov class via a ran-
dom walk, following Section 3.3. Concretely, the input a is multiplied by random ideals
of small prime norm (the discrete part of the random walk), and is randomly distorted
according to some Gaussian distribution (the continuous part of the random walk). The-
orem 3.10 ensures that the result is uniformly distributed in the Arakelov class group.
The discrete part of the random walk introduces small prime factors, hence our method
samples ideals in S·SB instead of S. In all applications we are aware of, we have S = S·SB.

The randomization step is a straightforward application of Section 3.3, so in the rest of
this section, we explain the main novelty of [[BPW24, Part 1]]: proving that the folklore sam-
pling method works for random ideals whose Arakelov classes are uniformly distributed.

Sampling in a fixed ideal lattice. Let Λ = xa ∈ IdLat0K be a normalized ideal lattice. We
consider the following sampling procedure. It takes as input the ideal lattice Λ, and a
parameter r > 0 controlling how large we want the sampled element to be.

(1) Consider a “ball” B in the embedding space KR. This is the shape we are going
to sample from. The reader may think of B as a unit ball in KR centered at the
origin. The conventional `2-ball is not the most convenient choice. In [[BPW24]], we
consider the unit ball for the `∞-norm. In [[FPSW23]] we achieve finer properties
by crafting a stranger shape.

(2) Sample β ← Λ ∩ rB uniformly at random. This finite set is the intersection of
a lattice with a “ball” of radius r. There is an efficient algorithm sampling from
this distribution, at least when r is not too small.

(3) Return the integral ideal βΛ−1.

Let us analyse the distribution of βΛ−1. For the moment, we consider Λ to be fixed, and
the source of randomness is the uniform sampling β ← Λ ∩ rB. Consider the probability
for the output to be a particular ideal b:
(3.3)

Pr
β←Λ∩rB

[βΛ−1 = b] = Pr
β←Λ∩rB

[β generates the OK-module bΛ] =
#(gen(bΛ) ∩ rB)

#(Λ ∩ rB)
,

where for any ideal lattice Λ, we denote by gen(Λ) = {x ∈ Λ | Λ = xOK} the set of OK-
generators (which may well be empty). The denominator #(Λ ∩ rB) is easy to estimate:
assuming that rB is large enough (compared to the covolume of Λ — or more accurately,
to its covering radius), then #(Λ ∩ rB) is well-approximated by the volume-to-covolume
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ratio

(3.4) #(Λ ∩ rB) ≈ Vol(rB)
Vol(Λ)

= rn
Vol(B)
|∆K |1/2

.

The numerator #(gen(bΛ)∩ rB) presents a more delicate challenge. Clearly, it is zero
if bΛ has no generator. If there exists a generator g ∈ gen(bΛ), then gen(bΛ) = gO×K .
Recall the logarithm map

Log∞ : K×R −→
⊕
ν

R : (yσ)σ 7−→
∑
ν

log |yσν | · LνM.

Writing α = Log∞(g), we have Log∞(gen(bΛ)) = α + Log(O×K). Since the kernel of
Log |O×

K
consists of the roots of unity µK , we obtain that

#(gen(bΛ) ∩ rB) = #µK ·#((α+ Log(O×K))︸ ︷︷ ︸
A translated lattice

∩ Log∞(rB)︸ ︷︷ ︸
A “logarithmic ball”

).

Now, we have reduced the problem of estimating Pr[βΛ−1 = b] to the problem of counting
the number of points in the intersection of a translated lattice (α+Log(O×K)) with a kind
of “logarithmic ball” Log∞(rB). While not quite a ball, it is helpful to think of Log∞(rB)
as a ball of radius log r.

One may be tempted to apply the same method as for the numerator: the intersection
should be approximately the volume-to-covolume ratio Vol(Log∞(rB))/Vol(Log(O×K)).
There are two issues with that. The first is that the lattice Log(O×K) does not have full
rank in the ambient space: it spans the hyperplane H. Therefore, instead of the “ball”
Log∞(rB), one should consider the volume of a “slice”

S (r,N(b)) = (α+H) ∩ Log∞(rB).

As the notation suggests, it does not depend on a choice of α: the shifted hyperplane
α+H = Log∞(N(b)1/n) +H depends only on N(b). We should then expect

(3.5) #(gen(bΛ) ∩ rB)
?
≈ #µK ·

Vol(S (r,N(b))

Vol(Log(O×K))
.

The second issue is more fundamental: the volume-to-covolume approximation for lattice
points requires the volume of the ball to be significantly larger than the covolume of the
lattice. The volume of Log(O×K) is, up to proper normalization, the regulator of the field,
and can grow exponentially in n and log |∆K |. Applying the volume-to-covolume approx-
imation would require r to be unreasonably large.

Average sampling for uniform Arakelov classes. This is where randomization comes in.
While the estimation (3.5) is very inaccurate for any particular Λ, it does hold on average.
Suppose Λ ∈ IdLat0K is a random (normalized) ideal lattice, following a distribution D
such that the Arakelov class of Λ is uniformly distributed.

We make two observations. First, the quantity #(gen(bΛ) ∩ rB) depends only on the
Arakelov class (i.e., isometry class) of the ideal lattice Λ. Indeed, if Λ′ is isometric to Λ,
then so are bΛ and bΛ′, and the isometry gives a bijection between gen(bΛ) ∩ rB and
gen(bΛ′)∩ rB. This is not exactly true for any choice of rB: we need that rB is somewhat
preserved by isometries (like an actual `2-ball).

Second, the quantity #(gen(bΛ) ∩ rB) is non-zero only if the ideal class of bΛ is
trivial, which means that its Arakelov class is in the image of TK → Pic0K . Recall that
TK = H/Log(O×K) is the Log-unit torus. Let F ⊂ H be a fundamental domain for
Log(O×K) (i.e., the projection F → TK is a bijection). The isometry class of bΛ is uniform
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among lattices of volume Vol(b) = N(b)|∆K |1/2. In particular, when non-empty, the
translated lattice Log∞(gen(bΛ)) is uniformly random among the translated lattices

β + Log∞(N(b)1/n) + Log(O×K) ⊂ Log∞(N(b)1/n) +H,

with β ∈ F . It is well-known that for any (full-rank) lattice L ⊂ V and measurable
set B ⊂ V , the average of #((α + L) ∩ B) over all possible translates α + L is equal to
Vol(B)/Vol(L). We deduce that the estimation (3.5) holds on average in the following
sense:

EΛ←D [#(gen(bΛ) ∩ rB)]

=
#µK

# Cl(K)
· Eβ←F

[
#((β + Log∞(N(b)1/n) + Log(O×K)) ∩ Log∞(rB))

]
=

#µK
# Cl(K)

· Vol((Log∞(N(b)1/n) +H) ∩ Log∞(rB))
Vol(Log(O×K))

=
#µK

# Cl(K)Vol(Log(O×K))
·Vol(S (r,N(b))).(3.6)

We are ready to go back to estimating Pr[βΛ−1 = b], this time with a random ideal
lattice Λ. We have

Pr
Λ←D

β←Λ∩rB

[βΛ−1 = b]
(3.3)
= EΛ←D

[
#(gen(bΛ) ∩ rB)

#(Λ ∩ rB)

]
(3.4)
≈ |∆K |1/2 · EΛ←D [#(gen(bΛ) ∩ rB)]

rn Vol(B)
(3.6)
=

|∆K |1/2 ·#µK
# Cl(K)Vol(Log(O×K))

· Vol(S (r,N(b)))

rn Vol(B)
.

In summary, there is a constant CK , depending only on the field K, such that

Pr
Λ←D

β←Λ∩rB

[βΛ−1 = b] ≈ CK ·
Vol(S (r,N(b)))

rn Vol(B)
.

In particular, the probability for the sampler to hit b depends only on N(b). With an ap-
propriate choice of B, one can ensure that the volume of the slice S (r,N(b)) is essentially
constant for N(b) < rn, and suddenly drops to zero when N(b) > rn. On other words,
as a function of b, the probability Pr[βΛ−1 = b] is proportional to the indicator function
1N(b)<rn .

Needless to say, all the approximations we have made in this discussion require much
more careful consideration. Still, we hope that we have given enough elements to convince
the reader of the following informal lemma.
Lemma 3.16 (informal). When the input Λ has uniformly random Arakelov class, the
sampler outputs an ideal βΛ−1 which is almost uniformly distributed among ideals of norm
at most rn.
Sketch of the proof of Theorem 3.14. The above informal lemma unlocks the proof of The-
orem 3.14. On input an ideal a, first generate a random walk to Λ = δwa (where δ ∈ K×R
is the continuous walk and the B-smooth ideal w ∈ SB is the discrete walk). Applying
Theorem 3.10, the ideal lattice Λ is uniformly random in the Arakelov class group. Sam-
pling β0 ← Λ ∩ rB, Lemma 3.16 ensures that β0Λ−1 is essentially uniform among integral
ideals of norm at most rn. We get

Pr
Λ←D

β0←Λ∩rB

[β0Λ
−1 ∈ S] =

∑
b∈S

Pr
Λ←D

β←Λ∩rB

[β0Λ
−1 = b] ≈ #{b ∈ S | N(b) < rn}

#{b | N(b) < rn}
≈ δS [rn],
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where δS [rn] is the “local density” of S, i.e., essentially the proportion of integral ideals of
norm at most rn that belong to the family S.

Finally, output β = δ−1β0 ∈ wa ⊂ a. We have

βa−1 = β0Λ
−1w ∈ (β0Λ

−1) · SB,

which falls in S·SB with probability at least (approximately) δS [rn], proving Theorem 3.14.
�

3.5.2. Rigorous computation of class groups and unit groups. In [[BPW24, Part 2]],
we illustrate the power of the ideal-sampling technique of [[BPW24, Part 1]] by applying it
to the computation of class groups and unit groups.

Let K be a number field of degree n and discriminant ∆K . The determination of the
structure of its class group Cl(K), together with a system of fundamental units, is one
of the main problems of computational number theory [Coh93, p. 217]. It has long been
believed that this task can be solved in probabilistic subexponential time. Such algorithms
have been described and analyzed under a variety of heuristic assumptions [Buc88, BF14].
Despite decades of investigation, only imaginary quadratic fields have been amenable to
a rigorous analysis [HM89], assuming GRH. In [[BPW24, Part 2]], we present the first gen-
eral algorithm for this problem that provably runs in probabilistic subexponential time,
assuming GRH. Recall the classical L-notation

Lx(α) = exp
(
O(logx)α(log logx)1−α

)
.

We prove the following theorem.

Theorem 3.17. Assuming the Generalized Riemann Hypothesis, there is a probabilistic
algorithm which, on input a number field K of degree n and discriminant ∆K , computes its
ideal class group and a compact representation of a fundamental system of units, and runs
in expected time polynomial in the length of the input, in L|∆K |(1/2), in Lnn(2/3), and in
min(ρK , L|∆K |(2/3+o(1))), where ρK is the residue at 1 of the Dedekind zeta function ζK .

It has been conjectured since Buchmann’s 1988 heuristic algorithm [Buc88] that this
problem can be solved in subexponential time L|∆K |(1/2) for any family of fields of fixed
degree. Theorem 3.17 implies this conjecture, assuming GRH.

Then, it was conjectured by Biasse and Fieker’s 2014 algorithm [BF14] that this prob-
lem can be solved in subexponential time even for varying degree. Again, Theorem 3.17
implies this conjecture, assuming GRH. However, Biasse and Fieker conjectured a com-
plexity as in Theorem 3.17 where the quantity ρK is replaced with Lnn(2/3). In our
analysis, the quantity ρK arises from the best known estimates on the density of bounded
smooth ideals. It seems ρK should appear in the same way in the heuristic complexity
of [BF14], unless one expects a better bound on the density of smooth ideals.

Blueprint of the algorithm. The algorithm in Theorem 3.17 follows the classical strategy
for the computation of the class group. Consider a bound B > 0, and let PK(B) be the
set of prime ideals of norm at most B. For B large enough, this set PK(B) generates the
class group [Bac90]. “Computing the class group” consists in finding a basis of the kernel
of the map

Φ :
⊕

p∈PK(B)

Z −→ Cl(K) : (np)p 7−→

[∏
p

pnp

]
.

This kernel is a lattice. An element (np)p ∈ kerΦ is called a relation. All we need to do
is generate many random relations, until they generate kerΦ. We thus need a relation
generator. The standard approach consists in generating a somewhat random B-smooth
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ideal s =
∏

p p
ap ∈ SB, then sample random elements β ∈ s until βs−1 =

∏
p p

bp is also B-
smooth. We obtain a “random” relation (ap+ bp)p ∈ kerΦ, since [

∏
p p

ap+bp ] = [βOK ] = 1.
This approach typically necessitates two heuristic assumptions:

(1) Efficiency of the relation generator: the probability for βs−1 =
∏

p p
bp to be

B-smooth is expected to be proportional to the density of B-smooth ideals.
(2) Random relations are well-distributed: the resulting relation (ap + bp)p ∈ kerΦ

should be “random enough”: a few samples should rapidly generate kerΦ.
These are two serious challenges for a heuristic-free algorithm. While it is clear that the
new ideal-sampling technique, Theorem 3.14, solves the first challenge, the second requires
more work. The main idea is that, for some appropriate distribution on the input ideal
s =

∏
p p

ap , the sampler returns a relation (ap + bp)p ∈ kerΦ which follows a discrete
Gaussian distribution on kerΦ. Samples from a discrete Gaussian distribution rapidly
generate the lattice on which it is supported.

Computing S-units. While the main result Theorem 3.17 is stated as an algorithm for
computing units and class groups, our algorithm actually does slightly more than that: it
computes the so-called Log-S-unit lattice for any set S of prime ideals. It is well known
that such an algorithm for S-units can be used to compute the class group and the unit
group. The same method can also be used to solve other algorithmic problems, such as
the principal ideal problem (decide whether an ideal is principal, and when it is, find a
generator), or the class group discrete logarithm problem.

3.5.3. Further applications. Sampling smooth ideals is a task that regularly arises in
computational number theory. In [[BPW24, Part 2]], we focus on the problem of class group
computation, but it is more generally a common component of index-calculus algorithms,
like the general number field sieve for integer factorization [LL93] or the computation of
discrete logarithms in finite fields. This direction has not been investigated yet.

Applying the ideal-sampling method of [[BPW24, Part 1]] to the case where S is the set
of prime ideals allows one to sample in the family S ·SB of near-prime ideals, of particular
interest in that it constitutes a dense family of efficiently factorable ideals. Therefore, our
sampling method provides a rigorous way to transform any ideal a into an equivalent ideal
b of known factorization. Obtaining such factorable ideals (or elements) is a key step in
algorithms to compute power residue symbols. Specifically, it allows one to perform the
“principalization step” in [BP17, §5.2] efficiently. De Boer has developed this idea in his
PhD dissertation [Boe22], applying the main result of [[BPW24, Part 1]] to construct the
first polynomial time algorithm to compute power residue symbols, assuming GRH.
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